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Summary

A system consisting of a single charge-coupled-
device (CCD) video camera, computer-controlled
video digitizer, and software to automate the mea-
surement has been developed for locating bullet holes
in targets at a ballistics range at the Langley Re-
search Center. The camera/digitizer system is a
crucial component of a highly instrumented, indoor
50-m rifle range that supports the development of
wind-resistant ultramatch ammunition. The sys-
tem was designed to take data rapidly (10 sec be-
tween shots) and automatically with little operator
intervention. The system description, measurement
concept, and procedure are presented along with lab-
oratory tests of repeatability and bias error. The
long-term (1-hr) repeatability of the system was
found to be 4 pym (one standard deviation) at the
target, and the bias error was found to be less than
50 pm. An analysis of the potential errors and a tech-
nique for calibration of the system are presented.

Introduction

The purpose of the ballistics range at the Langley
Research Center is to support the development of
wind-resistant ultramatch ammunition. The facility
consists of an indoor 50-m range with instrumented
machine rests for rifles and barreled actions. One
of the crucial requirements of the instrumentation
is the automated location of a bullet hole on a
target within £100 pgm. In the past, the cffect of
a ballistic variable, such as bullet velocity, on shot-
location precision has been determined by measuring
the spread of shot groups manually, which is not
conducive to the study of the effects.

The recent availability of relatively inexpensive
solid-state, charge-coupled-device (CCD), arca-array
video cameras and computer-controlled video frame
digitizers has enabled the automation of the bullet-
hole-location measurement. The automation of the
measurement will uniquely, and for the first time,
enable the correlation of bullet placement with mea-
sured ballistic variables and allow computer recon-
struction of shot groups. The development of the
present system, which uses a single camera and ob-
ject movement constrained to a plane, was expedited
by the development work for a two-camera, three-
dimensional (3-D) video photogrammetric system re-
ported in reference 1.

It was desired in the development of the auto-
mated video measuring system to use software code
that can be easily modified to interface with other
required instrumentation, such as chronographs that
are used to measure bullet velocities. In addition,
it was desired to keep the code flexible enough that

a casual programmer, probably experienced only in
BASIC, can implement changes and additions to the
code as the data acquisition or reduction procedures
are changed.

Symbols

¢ image distance (camera constant),
00|

D, distance fromn origin to camera, m

f focal length, mm

r radial image distance, mm

Sx.Sy true scale (to convert from image to
object)

Sxe Sy, calibrated scale

S Su pixel spacing. mm

X, Y.Z true object location, mm

Xy’ measured object location, mm

X Y. Z. location of camera perspective
center, m

X, Y, origin offset for transformation, mm

Yy first-order image coordinates, mm

.y distorted image coordinates, mm

Tpixs Ypix centroid, pixels

AX AY spacing of calibration targets in
object plane, mm

Ar, Ay spacing of calibration targets in
image plane, mm

ér radial distortion, mm

0 rotation angle for transformation,
deg

o third-order radial distortion coefhi-
cient, mm™2

1) camera angle to XY -plane, deg

Abbreviations:

AOI arca of interest

CCD charge-coupled device

cal calibration

h horizontal

rss root sum square

sag sagitta of line. mm

v vertical



Measurement Concept

The measurement concept is simply to use scale,
found by independent calibration, to convert from
image to object coordinates on the paper-target ob-
ject plane. This desired scale is equal to the inverse
of the lateral magnification commonly used in first-
order optics, and it is positive for video images. To
avoid being struck by a bullet, the camera will be
offset from the normal to the object plane and tilted
to center the paper target in its field of view (fig. 1).
Thus, the scale will vary across the field of view. This
is true even for a perfect system that obeys the first-
order (Gaussian) object-image relationships. This
variation in scale (sometimes called keystone distor-
tion for the keystonelike image of a rectangular ob-
ject) is quite separate from the optical aberration of
distortion, which is also due to a variation in scale
across the image plane. However, the aberration of
distortion is nonlinear and can exist even when the
optical axis of the camera is normal to the object
plane.
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Figure 1. Plan view of measurement gcometry.

The scale can be determined as the ratio of a
known length in the object plane to its length in the
image plane. To partially compensate for differences
in scale between two orthogonal axes on the tilted
object plane as well as for scaling differences in
converting pixels to units of length on the CCD
sensor, it was decided to use two fixed scales for X
and Y that are determined by calibration.

Taking the paper-target object to be in the XY-
plane with the origin at its center, the camera per-
spective center will be located at X, Y., Z. (where
Y. = 0) as shown in figure 1. Thus, the camera op-
tical axis will be inclined to the object plane normal
(Z-axis) by an angle ¢ given by tan—!(X./Z.). The
perspective center of the camera will be located at a

2

distance D, from the origin of the object plane given
by
Dy = (X2 4+ 2212 (1)

It is assumed in much of the following discussion
that the camera obeys the first-order object-image
relationships. Such an assumption is appropriate
and yields a reasonable estimate of performance since
imaging devices such as video cameras are designed
to closely approximate first-order operation.

There are several equivalent ways to compute
scale for a first-order optical system. A convenient
relationship for this analysis is that the scale for any
plane normal to the optical axis is given by the dis-
tance from the object plane to the perspective center
(perpendicular object distance) divided by the dis-
tance from the perspective center to the image plane
(perpendicular image distance). For the gcometry of
figure 1, the perpendicular object distance for any
point on the XY-plane is D, — X sin¢. The scale for
Y. represented by Sy, is then given by

Sy = (D, — X sin ¢)/c (2)

The image distance (or camera constant) c is deter-
mined by the focus setting of the camera and, once
set, is a constant of the camera independent of object
location. Note that for a given setup, D,. ¢, and ¢
are constants so that Sy varies linearly with X with
an intercept of D,/c and a slope of sing/c and is
independent of Y. For a setup in which ¢ = 0, Sy
reduces to the familiar object distance D, over image
distance ¢. The scale for X, Sy, is related to Sy by

Sx = Sy/cos o (3)

and is also independent of Y and varies linearly with
X for a given setup. The division by the cos¢ term
is necessary to convert from a length normal to the
optical axis to a length along the X-direction of
the object plane. The true scales Sy and Sy in
equations {3) and (2), respectively, relate the X, Y
object plane coordinates of any point to its image
plane coordinates z,y by

X=$Sx}
Y = ySy

(4)

The measurement concept employed here is to re-
place Sy and Sy which vary with X with two fixed
scales found by calibration, Sx. and Sy.. The cal-
ibrated scales are determined by ratioing object-to-
image lengths along the X-axis (for Sy.) and along
the Y-axis (for Sy,.). If Sx and Sy arc replaced with
the two fixed-scale values determined by calibration,



the measured object plane coordinates, represented
by X’ and Y’, are given, respectively, by

X' =zSx,
, (5)
Y’ =ySy.

Equations (5) are the basic relations used to locate
a bullet hole with the object plane error given by
X' — X and Y/ — Y. The calibrated scales Sy,
and Sy, are derived from the ratio of known object
lengths, AX and AY, to image lengths, Ar and Ay,
respectively, found during a calibration. Thus,

Sy. = AX/Azx
L e

Sy. = AY/Ay

The error in using equations (5) instead of equa-
tions (4) is presented in the appendix for the expected
geometry at the ballistics range. The largest error oc-
curs at the edge of field and is only 3 ym. It thus
appears adequate, at least for the geometry expected
at the ballistics range, to replace the true scales that
vary with X with the two fixed scales found by cal-
ibration. The appendix also contains a discussion of
error estimates due to camera placement, misalign-
ment of the paper target to the calibration plane,
spacing of the calibration targets, measurement er-
rors of the image and object planes, and optical
lens distortion. The estimated combined bias error
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is shown to be 19 um for the error sources consid-
ered. Because of the use of only the central portion
of the image arca and the partial compensation of the
calibration, there is little nced to correct for optical
distortion.

System Description and Procedure

A layout of the ballistics range with the CCD
camera system in place is shown in figure 2. A
Cohu model 4815 CCD video camera is mounted
on a tripod 2.5 m from the target which is in the
XY-plane. (See fig. 1 for the coordinate system re-
ferred to.) The video camera is displaced from the
Z-axis by 0.3 m. The paper-target object plane
is located behind a reference surface that has two
pairs of circular targets separated in the X- and
Y -directions by approximately 100 mm. The targets
on the reference surface establish a relative center
from which the location of a bullet hole is measured,
and they are used to correct for the relative move-
ment between the camera and paper target as well as
for camera image drifts that can occur during warm-
up or temperature changes.

The two pairs of targets on the reference surface
can be used to determine the scale in the X- and
Y-directions instead of using a separate calibration
plate if compensation is made for the displacement
of the reference surface from the paper-target object
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Figure 2. Plan view of ballistics range with CCD camera system in place. VA, VB, VC, and VD denote velocity stations.



plane. However, tests using only the reference
surface for calibration had larger errors than tests us-
ing a separate calibration plate located in the plane of
the paper target with closer spaced targets (25 mm).
It was thus decided to include in the procedure a cali-
bration with a separate calibration plate that is then
removed before a shooting session is started. The
four targets on the reference surface are then used
simply to establish the center of the target plane dur-
ing the shooting session.

The camera CCD sensor has 754 (horizontal)
pixels by 484 (vertical) pixels with pixel dimensions
of 11.5 (h) pm by 27.0 (v) um. The photointegration
site is shifted electronically 1/2 pixel in the vertical
direction between video fields to yield an effective
vertical pixel spacing of 13.5 pm for the full video
frame. The video camera lens has a focal length
of 75 mm and is mounted on an attachment that
doubles the focal length to 150 mm.

The composite video output from the camera is
input to an Epix Silicon Video frame-grabbing and
digitization board with 1 Mbyte onboard storage
which resides in an 8-MHz AT-class computer. The
video camera is synchronized by the Epix board. An
analog video output from the Epix board displays the
digitized images on a monitor. A video frame is digi-
tized by the Epix board into 752 (h) by 480 (v) pixels
with 256 gray levels. Since the clocks of the camera
and Epix board are at the same nominal frequency
(14.318 MHz), the effective horizontal and vertical
pixel spacings for the camera/digitizer system and
camera alone will be nearly equal. Differences be-
tween the system and camera pixel spacings will be
partially compensated by the calibration scales, Sy,
and Sy,.. Calibration procedures and considerations
for measuring the effective horizontal and vertical
pixel spacings are found in reference 1.

Commands to set up the Epix board, grab and
digitize the video signal, perform image-processing
operations, and store digitized video frames can be
developed as text command files to perform multi-
ple operations from within the executable code sup-
plied by the manufacturer. For this particular appli-
cation it was convenient to use the BASIC SHELL
command to return to the disk operating system
(DOS) and execute the Epix software (written in C)
to perform various operations and then to exit to the
BASIC code for further processing. With this proce-
dure, command files to cause the Epix board to per-
form various operations can be created within BASIC
before “SHELLing™ out to run the Epix code.

Any values such as pixel locations that are only
outputted to the computer screen by the Epix code
can be read from the screen with BASIC and used for
further computations or operations. The Microsoft
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QuickBASIC 4.0 environment was chosen for code
development because of its interpreterlike operation,
full-screen editing, and rapid compilation and exe-
cution of code. Digitized image files are stored on
a virtual disk (RAM) which decreases the amount
of time taken for image storage and retrieval and
also decreases the time taken for the random access
file reads required to compute gray level centroids in
BASIC.

A simplified flowchart for the computer code is
presented in figure 3. A new shooting session is begun
by reading the calibration data and the locations in
pixels of the reference targets, all of which are stored
on file from the last session. A command file is then
created within BASIC which, with the SHELL com-
mand, can be used to digitize a full-resolution im-
age and overlay the output video image with crosses
at the last locations of the reference targets (fig. 4).
This is to determine whether gross movement has oc-
curred between sessions that would require manual
recentering on the reference targets or possible recal-
ibration. Options are then presented to the user to
(1) take data automatically, (2) take data manually,
(3) enable or disable the automatic centroiding of the
reference targets, (4) perform a calibration, (5) dis-
play crosses on the reference targets, or (6) quit the
session.
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Figure 3. Simplified flowchart of computer code.

For initial tests, or if the camera or target plane
has moved, it is necessary to place the calibration
plate with its front surface in the plane of the paper
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target in order to determine new values of Sy. and
Sy .. The aluminum calibration plate has two pairs
of circular targets separated along the X- and Y-axes
by 25 mm. Two quartz-halogen 300-W lamps are po-
sitioned to provide approximately uniform illumina-
tion. If the calibration option is chosen, a video im-
age is grabbed, digitized, and displayed on the video
monitor along with a cursor that must be positioned
(to within a few pixels) to the four calibration targets
in the designated sequence.

(a) Crosses displayed on reference targets at startup of
shooting session.

(b) Cross displayed on bullet hole location found during
shooting session.

Figure 4. Video monitor displays.

Once the four calibration targets have been
located, the gray level centroid is computed (in
BASIC) for each target after an automatic back-
ground subtraction. The gray level background au-
tomatically subtracted is the maximum gray level on
the perimeter of a 35- by 35-pixel area-of-interest
(AOI) surrounding the location of the target found

manually. The origin of the pixel coordinates is in
the upper left of the digitized image with positive
z to the right and positive y downward. The gray
level centroids in pixels (Zpix. Ypix) are transformed
to millimeters on the image plane with

T = (Ipix - 376)sp,
(7)
y = (240 - ?/pix)slr

where s;, is the horizontal pixel spacing equal to
11.5 pm and s, is the vertical pixel spacing equal
to 13.5 um. Equations (6) are then used to compute
Sx. and Sy which are stored in a calibration file for
use in future sessions.

After performing the calibration and removing
the calibration plate, the paper-target transport is
positioned behind the reference surface at the calibra-
tion plane. To simplify the measurement and avoid
the possibility of overlapping bullet holes in a target,
only one bullet hole is allowed in the field of view
of the video camera at a time. To accomplish this
the paper target is translated between rounds. At
present, the automatic measurement of the location
of the bullet hole is initiated with a carriage return.
In the future, it is expected that a trigger will be
derived from the velocity instrumentation to initiate
data acquisition after sufficient delay to allow any
paper-target vibration to cease.

The automatic measurement of the bullet hole
location is begun by digitizing and storing a full-
resolution image on the Epix video board. The

" gray level contrast is next reversed for a 174- by

152-pixel AOI with the center determined by the tar-
gets on the reference surface. The contrast reversal
is necessary since the bullet hole is a black target
on a white background. The contrast-reversed AOI
is then stored on virtual disk. Before exiting the
Epix code, the contrast-reversed AOI is enhanced
and the binary centroid is computed. The binary cen-
troid is used as the start location for the gray level
centroid which is computed after returning to the
BASIC code. If reference target centroiding is en-
abled, then 32- by 28-pixel AOI's surrounding the
last centroid locations of the four reference targets
are also digitized and stored on virtual disk.

After returning to the BASIC code, the gray level
centroid of the bullet hole within a 40- by 40-pixel
AOI is computed with the center determined by the
binary centroid; and if reference target centroiding
is enabled, the gray level centroids of the four ref-
erence targets are also computed. The centroid in
pixels of the bullet hole is converted to millimeters
on the image plane with equations (7). The target
center given in millimeters on the image plane, as
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determined from the intersection of the pair of lines
formed by the four reference targets (see fig. 2), is
subtracted from the image coordinates before apply-
ing equations (5) to determine the object plane co-
ordinates of the bullet hole. A cross is displayed on
the current image at the location of the bullet hole
centroid to verify proper operation (fig. 4). With an
8-MHz AT-class computer, the time required for the
automated measurement is 8 sec when reference cen-
troiding is disabled and 12 sec when enabled.

If reference target centroiding is enabled, then the
target center is recomputed for each measurement
of the bullet hole location using the latest centroid
values for the four reference targets. Thus, camera
movement or drift due to temperature changes is
compensated. In addition, the reference target scale
ratio in X and Y for each shot compared with that
at calibration is used to multiply Sy, and Sy.. In
this way, small camera movements in the Z-direction
(which cause corresponding changes in Sy, and Sy,.)
are partially compensated even though the reference
surface is displaced from the calibration plane. This
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Figure 5.

Y-coordinates are shown without and with reference targets.

AY, mm

AY, mm

is because changes in Sx. and Sy, are only weakly
dependent on the actual value of Z.

If the manual option is selected, a full-resolution
image is digitized and stored on the Epix board and
a cursor is displayed for manual setting on the bullet
hole. Based on the manual setting, the gray level
centroid of a 35- by 35-pixel AOI is made and the
computation of the bullet hole location then proceeds
as above for the automated measurement.

Laboratory Tests

Laboratory tests were conducted to establish the
repeatability and bias error of the system. The
repeatability tests establish a lower limit on error
when data are taken only once and also indicate,
based on comparisons with independent bias error
estimates or tests, whether it is advantageous to
take multiple data for a single bullet hole. The bias
error of the system was determined based on known
positioning of a bullet hole in two dimensions with
high-precision translation stages. In addition, simple
tests were made of the effects of lighting variations
on the measurement.
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Repeatability tests of CCD camera system for a stationary bullet hole during warm-up. Variations in X- and



Repeatability Tests

For the repeatability tests a paper target with
a 0.22-caliber bullet hole in it was positioned in
a fixed location behind the reference surface with
the camera located 2.5 m away and offset from the
Z-axis by 0.3 m. A timing loop was set up within
the BASIC code to automatically record data every
15 sec. Tests were conducted both during warm-
up and after warm-up. For the tests during warm-
up, the camera was turned on for 30 sec before
data acquisition was started. For the repeatability
tests after warm-up, the camera had been on almost
3 hr before data acquisition was initiated. For both
tests, the targets on the reference surface as well as
the bullet hole were centroided and the data were
recorded as a function of time. The usefulness of
the reference targets could then be determined by
computing the bullet hole location as a function of
time both with and without use of the reference
targets to redetermine the relative center of the paper
target and scales.

The warm-up repeatability results are presented
in figure 5. In figures 5(a) and 5(b) the variations in
the X and Y object plane coordinates of the bullet
hole are plotted as a function of time without us-
ing the reference targets to redetermine the relative
center or correct the scales. The first coordinates
computed were subtracted from the data to deter-
mine the coordinate variations for the plots. The
slight increase in the X-coordinate initially, the sud-
den dip at about 6 min, and the gradual decrease
afterwards are characteristic of centroids taken along
the x-axis of the camera as noted in repeat tests.
The X-coordinate range was 65 pym. The exponen-
tial increase in the Y-coordinate is characteristic of
centroids taken along the y-direction of the camera
and is given by

AY =~ 265(1 — e /19) (8)

where t denotes time and is given in minutes and
AY is given in micrometers. The equivalent vertical
shift in pixels in the +y-direction of the image plane
during warm-up is —1.2 pixels. (The negative sign is
due to the sign convention for y in pixels.) With a
time constant of 10 min, AY will be within 3 pm of
the peak value of 265 um after about 45 min, which
is considered to be the minimum warm-up time for
image stability to a fraction of a pixel.

In figures 5(c) and 5(d) the variation in object
plane coordinates is given when the four reference
targets are used to establish the relative center and
adjust the scales. The large variations noted in
figures 5(a) and 5(b) are then reduced to a standard
deviation of 3.7 um with a range of 20 pm for X

and a standard deviation of 3.2 um and a range of
15 pm for Y. The ranges in figures 5(a) and 5(b)
have been reduced by using the reference targets by
a factor of 3.3 in X and a factor of 17.7 in Y. Nearly
all improvement is attributable to the adjustment of
the relative center rather than to scale adjustments.
(The variations in object plane coordinates caused
by scale changes in the two pairs of reference targets
have a standard deviation at the edge of a 16- by
16-mm object field of only 0.7 pm and a range of
4.3 pm in both X and Y based on computations of
the adjusted scales of the four reference targets as a
function of time.)

After the camera has been operating for 3 hr, the
standard deviations of the X- and Y-coordinates of
the stationary bullet hole for data taken over a 1-hr
period reduce to 6.9 um with a corresponding range
of 36 ym in X and to 6.6 ym with a corresponding
range of 46 ym in Y if the four reference targets are
not used to recompute the relative center (fig. 6).
In figure 6 the mean values of X or Y computed
using the four reference targets are subtracted from
the data sets before plotting. Just as for the tests
during camera warm-up, the variations in the z-
and y-axis centroids of the four reference targets
closely follow those of the bullet hole so that when
the four reference targets are used to recompute the
relative target center, the standard deviations reduce
to 4.1 ym in X and to 3.3 gm in Y with ranges of
21 pm and 18 pm, respectively. These values are not
statistically different from the standard deviations
computed for figures 5(c) and 5(d). Thus, providing
reference target centroiding is enabled, the stability
of the system is maintained throughout the warm-up
period of the camera.

Bias Error Tests

The bias error of the bullet hole measuring system
was determined with two high-resolution (0.1 pm)
computer-controlled translation stages arranged to
move the bullet hole in the XY-plane over a 16- by
16-mm object field. The single-axis uncertainty of
the stages over 16 mm of travel was determined to
be +£5 um by comparison with a distance-measuring
laser interferometer. The franslation stages were
used to position the bullet hole at 49 points covering
the field of view. The locations computed with
the CCD camera system were then transformed to
the known stage locations by nonlinear least squares
using the following conformal transformation with
offset X,,,Y, in which the scale is forced to be 1:

X' =X cos 8+Y sin 0+ X,

, (9)
Y =Y cos 6§ — X sin 0+Y,
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Figure 6. Repeatability tests of CCD camera system for a stationary bullet hole after warm-up.

Note change of scale from figure 5.

This transformation simply removes any rotation
or origin shift between the CCD camera system coor-
dinates and the two-dimensional (2-D) stage coordi-
nates. Thus, the residuals found after transformation
represent the differences between the two measure-
ments without additional arbitrary bias errors due
to rotation or origin shift of the coordinate systems.

The root-mean-square residuals in the object
plane were 25 pm in X and 30 pm in Y with maxi-
mum residuals of 48 ym in X and 43 pm in Y. The
residuals after transformation with equations (9) are
plotted in figure 7. A conservative estimate of bias
error is taken to be 50 pm in both X and Y. Since
the experimentally determined bias error is less than
the initial requirement by a factor of 2, the discrep-
ancy between the experimental bias error and pre-
dicted bias error (see the appendix) was left unre-
solved. The discrepancy is likely due to residual
image plane distortions larger than the 1 um used
for the prediction in the appendix. Another source
for the discrepancy could be 2-D translation errors
in the stages used to move the bullet hole for the ex-
perimental tests. Also note that the acquisition of
multiple images at a single bullet hole location is not
necessary except to verify system stability because of
the small value of the repeatability compared to bias
error.
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Figure 7. Residuals of CCD camera system from
translation stage.

A source of error that is difficult to estimate and
that is not considered here is due to the jagged edges
of the bullet hole in which case the computed centroid
may not indicate the true center. Note that for
the laboratory tests with the 2-D translation stage,
a single bullet hole was used so that this potential



source of error (jagged holes that vary from shot to
shot) was not present.

In addition to the above repeatability and bias er-
ror tests, simple lighting tests were also conducted in
which the overhead fluorescent lights were turned on
for some data acquisition and turned off for others.
The bullet hole was not moved during these tests.
The illumination then consisted of either the direct
lighting only or the direct lighting plus the overhead
fluorescent lights. An approximate 50-um variation
was found as a result of this lighting difference (which
is a much greater lighting difference than expected at
the ballistics range). These tests point out the need
for relatively constant and uniform illumination dur-
ing a shooting session. Note that it may be possible
to implement other location algorithms (such as the
best fit to a circle) that may be less susceptible to
target jaggedness or gross lighting variations (such
as might occur at an outdoor range).

Concluding Remarks

A system consisting of a charge-coupled-device
(CCD) camera, computer-controlled video digitizer,
and software to automate the measurement has been
developed for locating bullet holes in targets at the
ballistics range at the Langley Research Center. An
analysis of the potential errors and a technique for
calibration of the system have been presented. Lab-
oratory tests have shown that the long-term (1-hr)
repeatability of the system is 4 um (one standard de-
viation), and the maximum expected bias error, ver-
ified by comparisons with a two-dimensional transla-
tion stage, is less than 50 pmn.

NASA Langley Research Center
Hampton, VA 23665-5225
June 29. 1990



Appendix

Error Considerations

The basic measurement concept is to replace the
true scales (egs. (4)), that vary with X with two fixed
scales (egs. (5)) found by calibration. The theoreti-
cally estimated error in the basic measurement con-
cept is presented in the appendix for the expected
geometry at the ballistics facility. Also presented
are error estimates due to camera placement, mis-
alignment of the paper target to the plane used for
calibration, spacing of the calibration targets, mea-
surement errors of the image and object planes, and
optical lens distortion.

Error in Using Two Fixed Scales

The basic measurement concept of replacing the
true scale that varies with X with two fixed scales
can be tested by computing the errors in using equa-
tions (5) instead of equations (4). These errors
are depicted in figure 8 for the following expected
conditions at the ballistics facility: X, = 0.3 m,
Ze =25 m, f =150 mm, AX = AY = 25 mm.
From the values of X, and Z,, ¢ is computed to be
6.84°. The computed values for the image distance ¢
and the on-axis scale are 159.5 mm and 15.8, respec-
tively, assuming that the camera is focused on the
origin.
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(a) X error versus true X.
.005¢
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(b) Y error versus true Y.

Figure 8. X- and Y-coordinate errors in object plane versus
true X and Y, respectively.
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The true scales, Sy and Sy computed from equa-
tions (2) and (3), respectively, were used to deter-
mine the image coordinates from equations (4) for
the simulated calibration to determine Sy, and Sy.
The true image coordinates from equations (4) were
then used in equations (5) to determine the measured
object plane coordinates X’ and Y’ and the errors
computed as X’ — X and Y’ — Y over the object
field. The error in figure 8 is plotted over +£8 mm,
the expected extent of shot dispersion in a shooting
session. In figure 8(a) the X error (given in millime-
ters) that is independent of Y is plotted against the
true X value. In figure 8(b) the Y error (given in
millimeters) is plotted against the true Y value for
X = -8,0, and 8 mm. The largest error occurs at
the edge of field, and for X or Y it is only 3.0 um.
It thus appears adequate, at least for this example,
to replace the true scales that vary with X with the
two fixed scales found by calibration.

Error Dependence on Offset Angle

It is next determined how small the camera angle
to the XY-plane (¢) must be kept to avoid excessive
error and how the error varies with ¢. The X
and Y errors versus ¢ are plotted in figure 9 for a
point located at X = Y = 8 mm on the object
plane. For this plot, the distance from the camera
perspective center to the origin (D,) was kept at
2.5 m to maintain a constant scale on axis, and
the calibration scales were recomputed at each angle
before computing the error. The X and Y errors
for this plot were equal to within 0.023 um and
are plotted as one line. Over this range of ¢ the
error is approximately linear with a slope equal to
0.44 pm/deg. Thus, for ¢ less than 10°, the error at
the edge of field would be less than 4.4 um.
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Figure 9. X orY error in object plane versus ¢ (angle between
camera optical axis and normal to object plane).



Error Dependence on Alignment of Paper
Target

Another concern for the measurement process was
that the paper target might not be positioned exactly
in the same plane as that used for calibration. This
could be due to a translation or rotation of the paper
target with respect to the calibration plane. First
consider that the paper target and calibration planes
are separated by AZ (the Z difference between the
calibration and object planes), but they are still
parallel. The error due to this difference AZ is
plotted in figure 10 for the same conditions as those
in figure 8. The X and Y errors are equal to within
0.01 gm and are plotted as one line. For figure 10
Sx. and Sy, were computed with Z. = 2.5 m; the
object plane was then translated to Z.+ AZ and the
image coordinates z,y were computed for an object
at X =Y = 8 mm. Equations (5) were then used to
compute the expected object plane coordinates from
which 8 mm was subtracted to yield the error as a
function of AZ. This error is approximately linear
with a slope of 3.2 um/mm. The alignment error
AZ can be made less than 0.1 mm by using a feeler
gauge (such as a piece of paper) to locate the paper
target and calibration planes to the same reference
surface, thus resulting in an expected error of less
than 0.32 pym at the edge of field.
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Figure 10. X or Y error versus AZ (the Z difference between
the calibration and object planes).

The error introduced by rotation about the
Y-axis of the paper-target object plane with respect
to the calibration plane is presented in figure 11 for
the conditions of figure 8. The calibrated scales
Sx. and Sy, were computed for ¢ = 6.84°. The
camera angle ¢ was then incremented by A¢ before
computing the image plane coordinates for use with
equations (5) and the true X.,Y values to compute
the error. The X error (X' — X) is approximately
16 um/deg and the Y error (Y’ —Y) is approximately

0.45 pm/deg for small changes about ¢ = 6.84°.
Again, the difference in tilt angle can be held to 0.1°
by using a feeler gauge to align the paper target and
calibration planes and assuming that a height differ-
ence of 0.1 mm over 50 mm can be detected. This
misalignment results in an expected error of 1.6 pym.
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Figure 11. X and Y errors versus A¢ with calibration plane
rotation angle fixed.

Error Dependence on Calibration Targets

1t is also desirable to know the error dependence
on the spacing of the calibration targets along the
X- and Y-axes used to determine Sy, and Sy,.
The effect of the spacing of the calibration targets is
presented in figure 12 where the X error at the edge
of a 16- by 16-mm object field (X =Y = 8 mm) is
plotted against the spacing of the calibration targets
for the same conditions as those for figure 8. The Y
error is independent of the spacing of the calibration
targets in the Y-direction since Sy is independent
of Y. The X error changes slightly (approximately
0.1 m) as the calibration target spacing is increased
to span the field of view.
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Figure 12. X error versus AX (spacing of calibration targets).
Error in Y-coordinate is independent of AY.

Up to this point the errors associated with ex-
perimental measurements of length in the object or
image plane have been ignored. Errors in experimen-
tally determining the object and image plane separa-
tions of the calibration targets lead to bias errors in
Sx. and Sy.. (See egs. (6).) The separations of the
calibration targets for this study were measured with
an optical monocomparator that has a resolution of
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1 pm and an uncertainty of less than 5 um, thus re-
sulting in an estimated error of 7 um for the object
plane separation. Using the above conditions where
the object plane separation of the calibration target
is 25 mm and the nominal scale is 15.8, the resulting
crror at the edge of a 16- by 16-mm object field is
2.2 pm because of object plane error in the spacing
of the calibration targets. Even after distortion cor-
rections are made, additional image plane distortions
on the order of 1 ym result for CCD cameras (ref. 1)
that can lead to an error in image plane separation
of 1.4 um during calibration. This image plane error
during calibration can cause an object plane error of
7.0 pm at the edge of field.

Error Dependence on Residual Image
Plane Distortion

Even with no other sources of error and a perfect
calibration, the bullet hole location would still be in
error because of the uncorrectable image plane dis-
tortion of 1 um noted above for CCD cameras. The
object plane error is related to the image plane cr-
ror by the scale which (for the example used here)
is approximately 15.8. Thus, the object plane error
due to this 1-um image plane error is approximately
16 pm and is the largest single source of error identi-
fied. This error is independent of the location of the
bullet hole in the object plane.

Error Dependence on Optical Lens
Distortion

Lens distortion is usually described by radial and
decentering distortion terms. Radial distortion can
exist even for a perfectly constructed lens; however,
decentering distortion, which will be ignored in this
analysis, arises from errors in construction and is
generally much smaller than radial distortion. Radial
distortion (ér), can be resolved into an odd-power
series in 7 (the first-order radial distance on the image
plane given by (I2 + y2)1/2. where r and y are the
first-order image coordinates). For many lenses the
cubic term is a good approximation (ref. 2) to the
distortion

br = or® (A1)

The third-order radial distortion coefficient (o) has
units of mm~2. A tolerance of 1 percent is usually
desired for ér when it is expressed as a percentage
of the image height at the edge of field (ref. 2). For
typical %-in-format CCD sensors, such as those used
in this report, the image plane is 8.6 (h) mm by
6.5 (v) mm so that the image height at the edge
of field is 5.4 mm and a l-percent tolerance for ér
yields ¢ = 3.4 x 107* mm~2. Measurements of ¢
(refs. 1 and 3) for several 25- and 50-min focal-length
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video camera lenses have produced values of ¢ in the
range of —1 x 107* mm™2 to —2 x 10™* mm~2, and
more recent, unreported measurements at Langley
have produced values of ¢ for 13-mm focal-length
video camera lenses of —1 x 1073 mm™—2,

Although there are several methods to determine
the optical distortion including plumb line, test field,
and analytic self-calibration (ref. 4), a simplification
(based on the plumb line method) can be used to es-
timate the radial distortion without resorting to the
more involved techniques. This simplified technique
requires that only a single straight line or edge be
located near the edge of field, and thus a quick esti-
mation of ¢ can easily be made.

The radial distortion ér from equation (A1) can
be resolved into components in x and y on the image
plane as

br = or’z = ox3 + oy’
(A2)

by = m‘zy = ay3 + omQy

The image of a straight line that is parallel to the
y-axis of the image plane (for example) and located
near the edge of field will be curved (fig. 13} and
have an z-coordinate (z'), equal to r + 6z, which
varies quadratically with y as

d=z+o01+ 0y’ (A3)

The sagitta (sag) of the image of the straight line at
y is given simply by

sag = oy’x (A4)

Now, z and y in equation (A4) are the undistorted
first-order image coordinates that are unknown, but
which can be approximated with the actual (dis-
torted) image coordinates z’ and 3’ to yield the fol-
lowing expression for the third-order radial distortion
coefficient o:

o ~ sag/y?z’ (A5)

Thus, it is relatively simple to obtain an estimate
of o by measuring the sagitta of the image of a
straight line or edge at a particular z’, 3’ at the edge
of field. A negative value of ¢ indicates an inward
distorting or barrel distortion, whereas a positive
value indicates an outward distorting or pincushion
distortion.
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Figure 13. Estimation of third-order radial distortion o by
measuring sagitta (sag) of image of straight line.

Based on the above simplified technique, o was
found to be approximately 1.5 x 1073 mm ? for
the lens used for this report. The scale found by
calibration using equations (6) is in error because
of this distortion. However, this error is partially
compensated since for a positive o, the calibrated
scale will be smaller whereas the distorted-image
data used in equations (5) to determine X’ and Y’

will be larger. In effect, the calibrated scale causes
a linear term to be subtracted from the third-order
distortion, thus reducing the effective distortion over
the range of interest. At the edge of a 16- by 16-mm
object field with a scale of 15.8, a calibration target
spacing of 25 mm, and o = 1.5 X 1073 mm~2, the
combined error (calibration plus image plane) due to
distortion is 4.4 um at the object. This error can be
reduced to 0.44 um if o can be determined to within
+10 percent and be used to correct the image plane
data.

Combining Elemental Error Sources

The elemental errors previously noted combine to
produce bias (or systematic) error for a given setup.
If the elemental errors are independent, then an esti-
mate of the bias error can be made by taking the root
sum square (rss) of the elemental error estimates. For
a point at the edge of a 16- by 16-mm object field, the
estimate of the bias error based on the rss of the vari-
ous clemental errors identified above is 18.5 pm with-
out correction for radial lens distortion and 17.9 um
with correction. It is thus apparent that correction
for radial lens distortion causes little improvement
because of the use of only the central portion of the
image area and the partial compensation of the cali-
bration. Distortion correction becomes more critical
in situations where the majority of the image area is
used (ref. 1). If the above calculations are repeated
for an object field twice as large (32 mm by 32 mm),
the estimated bias crror becomes 26.9 um without
distortion correction and 25.1 pm with distortion
correction.
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