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SCHEMATIC OF TYPICAL FLOW VISUALIZATION SETUP IN 0.3-M TCT

Light beams are altered by refractive index changes and indeed flow induced

refractive index changes provides the impetus for conventional visualization

techniques such as schlieren and shadowgraph. Unfortunately effects related to the

flow can be masked by refractive index inhomogeneities external to the test section.

For high-pressure cryogenic facilities this is especially true in the interface

between the region of test and the more benign environment where equipment is housed.

Since the refractive index is directly proportional to density, it depends upon

pressure and temperature through the ideal gas law. Even mild temperature

inhomogeneities can be detrimental when coupled with high pressures as occurs in the

plenum. The simple shadowgraph scheme depicted in figure 1 was used to assess the

flow quality of the Langley 0.3-Meter Transonic Cryogenic Tunnel. The light source

was a pulsed (15 microsecond) 75-watt xenon arc lamp focused onto a 0.51 mm diameter

pinhole. Light was collimated with an f/8 mirror with a 1.22-m focal length. Data
were recorded on film with a 70mm format reflex camera.

Top view - No evacuation

Pressure
shell

Equipment pod

Windows

Equipment pod Light

Folding source

Plenum mirror Window

Test section

Figure i

413



REPRESENTATIVESHADOWGRAPH RESULTS PRIOR TO IMPROVEMENTS

The simple shadowgraph scheme depicted in figure i was used to characterize the

flow quality of the Langley 0.3-Meter TCT with results shown in figure 2. This

collage of photos was taken at Mach 0.65 conditions with stagnation pressure and

temperature as indicated. The completely uniform light field which characterizes the

pretest condition becomes increasingly mottled and jumbled as temperature decreases

and pressure increases. This behavior is typical of earlier optical experiments

conducted in this facility (see refs. 41, 42, and 43).
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MODIFIED SHADOWGRAPH SYSTEM TO EXCLUDE PLENUM EFFECTS

Several of the tests devised to determine the source of the image degradation

are described in reference 19. The crucial test involved installation of tubes to

penetrate the plenum. The tubes could be purged or evacuated to allow direct viewing

of the test section. Figure 3 shows the same layout as figure i with the hatched

area designating the region impacted by the isolation tubes. A bellows type of

arrangement was required to accommodate the large differential expansion experienced

in the structure of the facility. Details of the assembly are found in the
reference.
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EFFECT OF PLENUM EVACUATION ON SHADOWGRAPH RESULTS

When the penetration tubes were evacuated the quality of the shadowgraphs

improved dramatically. Results for the worst test condition of figure 2 (Tt - 180 R,

Pt - 5 atm, Mach 0.65) are shown in figure 4. Residual "graininess" in the evacuated
case is believed to be due to the flow field itself. Earlier difficulties were

brought about by density inhomogeneities in the regions of strong temperature

gradients especially in those areas under high pressure. Provisions for evacuated

paths to and from the test section should be seriously considered in future flow

visualization efforts for facilities of this type. In scaled up cryogenic facilities

such as the National Transonic Facility equipment is completely housed within the

plenum area (ref. 42). Much of the critical optical path would be in the controlled

environment of the equipment enclosures. Nevertheless, regions near windows where

extreme temperature gradients occur should be evacuated if possible to lessen the

effects of convection induced mixing.
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