81 research outputs found

    Identification of Behaviour in Freely Moving Dogs (Canis familiaris) Using Inertial Sensors

    Get PDF
    Monitoring and describing the physical movements and body postures of animals is one of the most fundamental tasks of ethology. The more precise the observations are the more sophisticated the interpretations can be about the biology of a certain individual or species. Animal-borne data loggers have recently contributed much to the collection of motion-data from individuals, however, the problem of translating these measurements to distinct behavioural categories to create an ethogram is not overcome yet. The objective of the present study was to develop a “behaviour tracker”: a system composed of a multiple sensor data-logger device (with a tri-axial accelerometer and a tri-axial gyroscope) and a supervised learning algorithm as means of automated identification of the behaviour of freely moving dogs. We collected parallel sensor measurements and video recordings of each of our subjects (Belgian Malinois, N=12; Labrador Retrievers, N=12) that were guided through a predetermined series of standard activities. Seven behavioural categories (lay, sit, stand, walk, trot, gallop, canter) were pre-defined and each video recording was tagged accordingly. Evaluation of the measurements was performed by support vector machine (SVM) classification. During the analysis we used different combinations of independent measurements for training and validation (belonging to the same or different individuals or using different training data size) to determine the robustness of the application. We reached an overall accuracy of above 90% perfect identification of all the defined seven categories of behaviour when both training and validation data belonged to the same individual, and over 80% perfect recognition rate using a generalized training data set of multiple subjects. Our results indicate that the present method provides a good model for an easily applicable, fast, automatic behaviour classification system that can be trained with arbitrary motion patterns and potentially be applied to a wide range of species and situations

    Analyses of HIV-1 integrase sequences prior to South African national HIV-treatment program and available of integrase inhibitors in Cape Town, South Africa

    Get PDF
    HIV-Integrase (IN) has proven to be a viable target for highly specific HIV-1 therapy. We aimed to characterize the HIV-1 IN gene in a South African context and identify resistance-associated mutations (RAMs) against available first and second generation Integrase strand-transfer inhibitors (InSTIs). We performed genetic analyses on 91 treatment-naĂŻve HIV-1 infected patients, as well as 314 treatmentnaive South African HIV-1 IN-sequences, downloaded from Los Alamos HIV Sequence Database. Genotypic analyses revealed the absence of major RAMs in the cohort collected before the broad availability of combination antiretroviral therapy (cART) and INSTI in South Africa, however, occurred at a rate of 2.85% (9/314) in database derived sequences. RAMs were present at IN-positions 66, 92, 143, 147 and 148, all of which may confer resistance to Raltegravir (RAL) and Elvitegravir (EVG), but are unlikely to affect second-generation Dolutegravir (DTG), except mutations in the Q148 pathway. Furthermore, protein modeling showed, naturally occurring polymorphisms impact the stability of the intasome-complex and therefore may contribute to an overall potency against InSTIs. Our data suggest the prevalence of InSTI RAMs, against InSTIs, is low in South Africa, but natural polymorphisms and subtype-specific differences may influence the effect of individual treatment regimens

    Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning

    Get PDF
    Background: Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to ‘fill in the gaps’ between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented.Results: We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles.Conclusions: This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed

    A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection

    Get PDF
    The response to respiratory viruses varies substantially between individuals, and there are currently no known molecular predictors from the early stages of infection. Here we conduct a community-based analysis to determine whether pre- or early post-exposure molecular factors could predict physiologic responses to viral exposure. Using peripheral blood gene expression profiles collected from healthy subjects prior to exposure to one of four respiratory viruses (H1N1, H3N2, Rhinovirus, and RSV), as well as up to 24 h following exposure, we find that it is possible to construct models predictive of symptomatic response using profiles even prior to viral exposure. Analysis of predictive gene features reveal little overlap among models; however, in aggregate, these genes are enriched for common pathways. Heme metabolism, the most significantly enriched pathway, is associated with a higher risk of developing symptoms following viral exposure. This study demonstrates that pre-exposure molecular predictors can be identified and improves our understanding of the mechanisms of response to respiratory viruses

    Schistosoma mansoni infection alters the host pre-vaccination environment resulting in blunted Hepatitis B vaccination immune responses

    Get PDF
    Schistosomiasis is a disease caused by parasitic flatworms of the Schistosoma spp., and is increasingly recognized to alter the immune system, and the potential to respond to vaccines. The impact of endemic infections on protective immunity is critical to inform vaccination strategies globally. We assessed the influence of Schistosoma mansoni worm burden on multiple host vaccine-related immune parameters in a Ugandan fishing cohort (n = 75) given three doses of a Hepatitis B (HepB) vaccine at baseline and multiple timepoints post-vaccination. We observed distinct differences in immune responses in instances of higher worm burden, compared to low worm burden or non-infected. Concentrations of pre-vaccination serum schistosome-specific circulating anodic antigen (CAA), linked to worm burden, showed a significant bimodal distribution associated with HepB titers, which was lower in individuals with higher CAA values at month 7 post-vaccination (M7). Comparative chemokine/cytokine responses revealed significant upregulation of CCL19, CXCL9 and CCL17 known to be involved in T cell activation and recruitment, in higher CAA individuals, and CCL17 correlated negatively with HepB titers at month 12 post-vaccination. We show that HepB-specific CD4(+) T cell memory responses correlated positively with HepB titers at M7. We further established that those participants with high CAA had significantly lower frequencies of circulating T follicular helper (cTfh) subpopulations pre- and post-vaccination, but higher regulatory T cells (Tregs) post-vaccination, suggesting changes in the immune microenvironment in high CAA could favor Treg recruitment and activation. Additionally, we found that changes in the levels of innate-related cytokines/chemokines CXCL10, IL-1 & beta;, and CCL26, involved in driving T helper responses, were associated with increasing CAA concentration. This study provides further insight on pre-vaccination host responses to Schistosoma worm burden which will support our understanding of vaccine responses altered by pathogenic host immune mechanisms and memory function and explain abrogated vaccine responses in communities with endemic infections.Author summarySchistosomiasis drives host immune responses for optimal pathogen survival, potentially altering host responses to vaccine-related antigen. Chronic schistosomiasis and co-infection with hepatotropic viruses are common in countries where schistosomiasis is endemic. We explored the impact of Schistosoma mansoni (S. mansoni) worm burden on Hepatitis B (HepB) vaccination of individuals from a fishing community in Uganda. We demonstrate that higher schistosome-specific antigen (circulating anodic antigen, CAA) concentration pre-vaccination, is associated with lower HepB antibody titers post-vaccination at month 7. We show higher pre-vaccination levels of CCL17 in instances of high CAA that negatively associate with HepB antibody titers month 12 post-vaccination and coincided with lower frequencies of circulating T follicular helper cell populations (cTfh), proliferating antibody secreting cells (ASCs), and higher frequencies of regulatory T cells (Tregs). We also show that monocyte function is important in HepB vaccine responses, and high CAA is associated with alterations in the early innate cytokine/chemokine microenvironment. Our findings suggest that in individuals with high CAA and likely high worm burden, schistosomiasis can create an environment that is polarized against optimal host immune responses to the vaccine, which puts many endemic communities at risk for infection against HepB and other diseases that are preventable by vaccines.Cancer Signaling networks and Molecular Therapeutic

    A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection

    Get PDF
    The response to respiratory viruses varies substantially between individuals, and there are currently no known molecular predictors from the early stages of infection. Here we conduct a community-based analysis to determine whether pre- or early post-exposure molecular factors could predict physiologic responses to viral exposure. Using peripheral blood gene expression profiles collected from healthy subjects prior to exposure to one of four respiratory viruses (H1N1, H3N2, Rhinovirus, and RSV), as well as up to 24 h following exposure, we find that it is possible to construct models predictive of symptomatic response using profiles even prior to viral exposure. Analysis of predictive gene features reveal little overlap among models; however, in aggregate, these genes are enriched for common pathways. Heme metabolism, the most significantly enriched pathway, is associated with a higher risk of developing symptoms following viral exposure. This study demonstrates that pre-exposure molecular predictors can be identified and improves our understanding of the mechanisms of response to respiratory viruses

    Analysis of LoRaWAN 1.0 and 1.1 Protocols Security Mechanisms

    No full text
    LoRaWAN is a low power wide area network (LPWAN) technology protocol introduced by the LoRa Alliance in 2015. It was designed for its namesake features: long range, low power, low data rate, and wide area networks. Over the years, several proposals on protocol specifications have addressed various challenges in LoRaWAN, focusing on its architecture and security issues. All of these specifications must coexist, giving rise to the compatibility issues impacting the sustainability of this technology. This paper studies the compatibility issues in LoRaWAN protocols. First, we detail the different protocol specifications already disclosed by the LoRa Alliance in two major versions, v1.0 and v1.1. This is done through presenting two scenarios where we discuss the communication and security mechanisms. In the first scenario, we describe how an end node (ED) and network server (NS) implementing LoRaWAN v1.0 generate session security keys and exchange messages for v1.0. In the second scenario, we describe how an ED v1.1 and an NS v1.1 communicate after generating security session keys. Next, we highlight the compatibility issues between the components implementing the two different LoRaWAN Specifications (mainly v1.0 and v1.1). Next, we present two new scenarios (scenarios 3 and 4) interchanging the ED and NS versions. In scenario three, we detail how an ED implementing LoRaWAN v1.1 communicates with an NS v1.0. Conversely, in scenario four, we explain how an ED v1.0 and an NS v1.1 communicate. In all these four scenarios, we highlight the concerns with security mechanism: show security session keys are generated and how integrity and confidentiality are guaranteed in LoRaWAN. At the end, we present a comparative table of these four compatibility scenarios
    • 

    corecore