4,466 research outputs found

    Size-structured populations: immigration, (bi)stability and the net growth rate

    Get PDF
    We consider a class of physiologically structured population models, a first order nonlinear partial differential equation equipped with a nonlocal boundary condition, with a constant external inflow of individuals. We prove that the linearised system is governed by a quasicontraction semigroup. We also establish that linear stability of equilibrium solutions is governed by a generalized net reproduction function. In a special case of the model ingredients we discuss the nonlinear dynamics of the system when the spectral bound of the linearised operator equals zero, i.e. when linearisation does not decide stability. This allows us to demonstrate, through a concrete example, how immigration might be beneficial to the population. In particular, we show that from a nonlinearly unstable positive equilibrium a linearly stable and unstable pair of equilibria bifurcates. In fact, the linearised system exhibits bistability, for a certain range of values of the external inflow, induced potentially by All\'{e}e-effect.Comment: to appear in Journal of Applied Mathematics and Computin

    The Invariant Measures of some Infinite Interval Exchange Maps

    Full text link
    We classify the locally finite ergodic invariant measures of certain infinite interval exchange transformations (IETs). These transformations naturally arise from return maps of the straight-line flow on certain translation surfaces, and the study of the invariant measures for these IETs is equivalent to the study of invariant measures for the straight-line flow in some direction on these translation surfaces. For the surfaces and directions for which our methods apply, we can characterize the locally finite ergodic invariant measures of the straight-line flow in a set of directions of Hausdorff dimension larger than 1/2. We promote this characterization to a classification in some cases. For instance, when the surfaces admit a cocompact action by a nilpotent group, we prove each ergodic invariant measure for the straight-line flow is a Maharam measure, and we describe precisely which Maharam measures arise. When the surfaces under consideration are finite area, the straight-line flows in the directions we understand are uniquely ergodic. Our methods apply to translation surfaces admitting multi-twists in a pair of cylinder decompositions in non-parallel directions.Comment: 107 pages, 11 figures. Minor improvement

    Steady states in a structured epidemic model with Wentzell boundary condition

    Get PDF
    We introduce a nonlinear structured population model with diffusion in the state space. Individuals are structured with respect to a continuous variable which represents a pathogen load. The class of uninfected individuals constitutes a special compartment that carries mass, hence the model is equipped with generalized Wentzell (or dynamic) boundary conditions. Our model is intended to describe the spread of infection of a vertically transmitted disease, for example Wolbachia in a mosquito population. Therefore the (infinite dimensional) nonlinearity arises in the recruitment term. First we establish global existence of solutions and the Principle of Linearised Stability for our model. Then, in our main result, we formulate simple conditions, which guarantee the existence of non-trivial steady states of the model. Our method utilizes an operator theoretic framework combined with a fixed point approach. Finally, in the last section we establish a sufficient condition for the local asymptotic stability of the positive steady state

    Segregation of granular binary mixtures by a ratchet mechanism

    Full text link
    We report on a segregation scheme for granular binary mixtures, where the segregation is performed by a ratchet mechanism realized by a vertically shaken asymmetric sawtooth-shaped base in a quasi-two-dimensional box. We have studied this system by computer simulations and found that most binary mixtures can be segregated using an appropriately chosen ratchet, even when the particles in the two components have the same size, and differ only in their normal restitution coefficient or friction coefficient. These results suggest that the components of otherwise non-segregating granular mixtures may be separated using our method.Comment: revtex, 4 pages, 4 figures, submitte

    Test of classical nucleation theory on deeply supercooled high-pressure simulated silica

    Full text link
    We test classical nucleation theory (CNT) in the case of simulations of deeply supercooled, high density liquid silica, as modelled by the BKS potential. We find that at density ρ=4.38\rho=4.38~g/cm3^3, spontaneous nucleation of crystalline stishovite occurs in conventional molecular dynamics simulations at temperature T=3000 K, and we evaluate the nucleation rate J directly at this T via "brute force" sampling of nucleation events. We then use parallel, constrained Monte Carlo simulations to evaluate ΔG(n)\Delta G(n), the free energy to form a crystalline embryo containing n silicon atoms, at T=3000, 3100, 3200 and 3300 K. We find that the prediction of CNT for the n-dependence of ΔG(n)\Delta G(n) fits reasonably well to the data at all T studied, and at 3300 K yields a chemical potential difference between liquid and stishovite that matches independent calculation. We find that nn^*, the size of the critical nucleus, is approximately 10 silicon atoms at T=3300 K. At 3000 K, nn^* decreases to approximately 3, and at such small sizes methodological challenges arise in the evaluation of ΔG(n)\Delta G(n) when using standard techniques; indeed even the thermodynamic stability of the supercooled liquid comes into question under these conditions. We therefore present a modified approach that permits an estimation of ΔG(n)\Delta G(n) at 3000 K. Finally, we directly evaluate at T=3000 K the kinetic prefactors in the CNT expression for J, and find physically reasonable values; e.g. the diffusion length that Si atoms must travel in order to move from the liquid to the crystal embryo is approximately 0.2 nm. We are thereby able to compare the results for J at 3000 K obtained both directly and based on CNT, and find that they agree within an order of magnitude.Comment: corrected calculation, new figure, accepted in JC

    Breathers in the weakly coupled topological discrete sine-Gordon system

    Get PDF
    Existence of breather (spatially localized, time periodic, oscillatory) solutions of the topological discrete sine-Gordon (TDSG) system, in the regime of weak coupling, is proved. The novelty of this result is that, unlike the systems previously considered in studies of discrete breathers, the TDSG system does not decouple into independent oscillator units in the weak coupling limit. The results of a systematic numerical study of these breathers are presented, including breather initial profiles and a portrait of their domain of existence in the frequency-coupling parameter space. It is found that the breathers are uniformly qualitatively different from those found in conventional spatially discrete systems.Comment: 19 pages, 4 figures. Section 4 (numerical analysis) completely rewritte

    Model systems in SDHx-related pheochromocytoma/paraganglioma

    Get PDF
    Pheochromocytoma (PHEO) and paraganglioma (PGL) (together PPGL) are tumors with poor outcomes that arise from neuroendocrine cells in the adrenal gland, and sympathetic and parasympathetic ganglia outside the adrenal gland, respectively. Many follow germline mutations in genes coding for subunits of succinate dehydrogenase (SDH), a tetrameric enzyme in the tricarboxylic acid (TCA) cycle that both converts succinate to fumarate and participates in electron transport. Germline SDH subunit B (SDHB) mutations have a high metastatic potential. Herein, we review the spectrum of model organisms that have contributed hugely to our understanding of SDH dysfunction. In Saccharomyces cerevisiae (yeast), succinate accumulation inhibits alpha-ketoglutarate-dependent dioxygenase enzymes leading to DNA demethylation. In the worm Caenorhabditis elegans, mutated SDH creates developmental abnormalities, metabolic rewiring, an energy deficit and oxygen hypersensitivity (the latter is also found in Drosophila melanogaster). In the zebrafish Danio rerio, sdhb mutants display a shorter lifespan with defective energy metabolism. Recently, SDHB-deficient pheochromocytoma has been cultivated in xenografts and has generated cell lines, which can be traced back to a heterozygous SDHB-deficient rat. We propose that a combination of such models can be efficiently and effectively used in both pathophysiological studies and drug-screening projects in order to find novel strategies in PPGL treatment
    corecore