2,383 research outputs found

    Attacking Group Protocols by Refuting Incorrect Inductive Conjectures

    Get PDF
    Automated tools for finding attacks on flawed security protocols often fail to deal adequately with group protocols. This is because the abstractions made to improve performance on fixed 2 or 3 party protocols either preclude the modelling of group protocols all together, or permit modelling only in a fixed scenario, which can prevent attacks from being discovered. This paper describes Coral, a tool for finding counterexamples to incorrect inductive conjectures, which we have used to model protocols for both group key agreement and group key management, without any restrictions on the scenario. We will show how we used Coral to discover 6 previously unknown attacks on 3 group protocols

    Non-equilibrium dynamics: Studies of reflection of Bose-Einstein condensates

    Full text link
    The study of the non-equilibrium dynamics in Bose-Einstein condensed gases has been dominated by the zero-temperature, mean field Gross-Pitaevskii formalism. Motivated by recent experiments on the reflection of condensates from silicon surfaces, we revisit the so-called {\em classical field} description of condensate dynamics, which incorporates the effects of quantum noise and can also be generalized to include thermal effects. The noise is included in a stochastic manner through the initial conditions. We show that the inclusion of such noise is important in the quantitative description of the recent reflection experiments

    The Josephson plasmon as a Bogoliubov quasiparticle

    Get PDF
    We study the Josephson effect in alkali atomic gases within the two-mode approximation and show that there is a correspondence between the Bogoliubov description and the harmonic limit of the phase representation. We demonstrate that the quanta of the Josephson plasmon can be identified with the Bogoliubov excitations of the two-site Bose fluid. We thus establish a mapping between the Bogoliubov approximation for the many-body theory and the linearized pendulum Hamiltonian.Comment: 9 pages, LaTeX, submitted to J. Phys.

    Torsional-flexural buckling of unevenly battened columns under eccentrical compressive loading

    Get PDF
    In this paper, an analytical model is developed to determine the torsional-flexural buckling load of a channel column braced by unevenly distributed batten plates. Solutions of the critical-buckling loads were derived for three boundary cases using the energy method in which the rotating angle between the adjacent battens was presented in the form of a piecewise cubic Hermite interpolation (PCHI) for unequally spaced battens. The validity of the PCHI method was numerically verified by the classic analytical approach for evenly battened columns and a finite-element analysis for unevenly battened ones, respectively. Parameter studies were then performed to examine the effects of loading eccentricities on the torsional-flexural buckling capacity of both evenly and unevenly battened columns. Design parameters taken into account were the ratios of pure torsional buckling load to pure flexural–buckling load, the number and position of battens, and the ratio of the relative extent of the eccentricity. Numerical results were summarized into a series of relative curves indicating the combination of the buckling load and corresponding moments for various buckling ratios.National Natural Science Foundation of China (NSFC) under grant number (No.) 51175442 and Sichuan International Cooperation Research Project under grant No. 2014HH002

    Polarization dependence of four-wave mixing in a degenerate two-level system

    Get PDF
    Nearly degenerate four-wave mixing (NDFWM) within a closed degenerate two-level atomic transition is theoretically and experimentally examined. Using the model presented by A. Lezama et al [Phys. Rev. A 61, 013801 (2000)] the NDFWM spectra corresponding to different pump and probe polarization cases are calculated and discussed. The calculated spectra are compared to the observation of NDFWM within the 6S1/2(F=4)→6P3/2(F=5)6S_{1/2}(F=4)\to 6P_{3/2}(F=5) transition of cesium in a phase conjugation experiment using magneto optically cooled atomsComment: 10 pages, 13 figures; submitted to Phys. Rev.

    Efficient FPT algorithms for (strict) compatibility of unrooted phylogenetic trees

    Full text link
    In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species XX; these relationships are often depicted via a phylogenetic tree -- a tree having its leaves univocally labeled by elements of XX and without degree-2 nodes -- called the "species tree". One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g. DNA sequences originating from some species in XX), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The so-obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping -- but not identical -- sets of labels, is called "supertree". In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed-parameter tractable in the number of input trees kk, by using their expressibility in Monadic Second Order Logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on kk of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time 2O(k2)⋅n2^{O(k^2)} \cdot n, where nn is the total size of the input.Comment: 18 pages, 1 figur

    New Wolf-Rayet Galaxies with Detection of WC Stars

    Get PDF
    We report the discovery of two new Wolf-Rayet (WR) galaxies: Mrk~1039, and F08208++2816. Two broad WR bumps at 5808\AA~ and 4650\AA~ indicate the presence of WCE and WNL star population in all two sources. We also confirm the presenceof WR features in Mrk~35, previously detected in a different position. The observed equivalent width of the WR bump at 4650\AA~ and the derived number ratios of WR/(WR++O) imply that star formation in these sources takes place inshort burst duration. Comparisons with the recent models of WR populations in young starbursts with the observed EW(\HeII)/EW(\CIV)/EW(WRbump) and their relative intensitie provide an indication that the stellar initial mass function in some WR galaxies might not be Salpeter-like. It is interesting to find that the luminous IRAS source, F08208++2816, has little dust reddening, probably because of the existence of a powerful superwind. By comparisons with other starbursts observed with the Hopkins Ultraviolet Telescope, F08208++2816 as a merging system renders a chance to study the contribution from young starbursts to the UV background radiation in universe.Comment: 22 pages, 6 figures, 4 tables, accepted by The Astrophysical Journa

    Classical and quantum regimes of two-dimensional turbulence in trapped Bose-Einstein condensates

    Full text link
    We investigate two-dimensional turbulence in finite-temperature trapped Bose-Einstein condensates within damped Gross-Pitaevskii theory. Turbulence is produced via circular motion of a Gaussian potential barrier stirring the condensate. We systematically explore a range of stirring parameters and identify three regimes, characterized by the injection of distinct quantum vortex structures into the condensate: (A) periodic vortex dipole injection, (B) irregular injection of a mixture of vortex dipoles and co-rotating vortex clusters, and (C) continuous injection of oblique solitons that decay into vortex dipoles. Spectral analysis of the kinetic energy associated with vortices reveals that regime (B) can intermittently exhibit a Kolmogorov k−5/3k^{-5/3} power law over almost a decade of length or wavenumber (kk) scales. The kinetic energy spectrum of regime (C) exhibits a clear k−3/2k^{-3/2} power law associated with an inertial range for weak-wave turbulence, and a k−7/2k^{-7/2} power law for high wavenumbers. We thus identify distinct regimes of forcing for generating either two-dimensional quantum turbulence or classical weak-wave turbulence that may be realizable experimentally.Comment: 11 pages, 10 figures. Minor updates to text and figures 1, 2 and

    Lassoing and corraling rooted phylogenetic trees

    Full text link
    The construction of a dendogram on a set of individuals is a key component of a genomewide association study. However even with modern sequencing technologies the distances on the individuals required for the construction of such a structure may not always be reliable making it tempting to exclude them from an analysis. This, in turn, results in an input set for dendogram construction that consists of only partial distance information which raises the following fundamental question. For what subset of its leaf set can we reconstruct uniquely the dendogram from the distances that it induces on that subset. By formalizing a dendogram in terms of an edge-weighted, rooted phylogenetic tree on a pre-given finite set X with |X|>2 whose edge-weighting is equidistant and a set of partial distances on X in terms of a set L of 2-subsets of X, we investigate this problem in terms of when such a tree is lassoed, that is, uniquely determined by the elements in L. For this we consider four different formalizations of the idea of "uniquely determining" giving rise to four distinct types of lassos. We present characterizations for all of them in terms of the child-edge graphs of the interior vertices of such a tree. Our characterizations imply in particular that in case the tree in question is binary then all four types of lasso must coincide

    Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch

    Get PDF
    The bacterial flagellar switch that controls the direction of flagellar rotation during chemotaxis has a highly cooperative response. This has previously been understood in terms of the classic two-state, concerted model of allosteric regulation. Here, we used high-resolution optical microscopy to observe switching of single motors and uncover the stochastic multistate nature of the switch. Our observations are in detailed quantitative agreement with a recent general model of allosteric cooperativity that exhibits conformational spread—the stochastic growth and shrinkage of domains of adjacent subunits sharing a particular conformational state. We expect that conformational spread will be important in explaining cooperativity in other large signaling complexes
    • 

    corecore