1,495 research outputs found

    Effects of low energy electron irradiation on formation of nitrogen-vacancy centers in single-crystal diamond

    Full text link
    Exposure to beams of low energy electrons (2 to 30 keV) in a scanning electron microscope locally induces formation of NV-centers without thermal annealing in diamonds that have been implanted with nitrogen ions. We find that non-thermal, electron beam induced NV-formation is about four times less efficient than thermal annealing. But NV-center formation in a consecutive thermal annealing step (800C) following exposure to low energy electrons increases by a factor of up to 1.8 compared to thermal annealing alone. These observations point to reconstruction of nitrogen-vacancy complexes induced by electronic excitations from low energy electrons as an NV-center formation mechanism and identify local electronic excitations as a means for spatially controlled room-temperature NV-center formation

    A Pilot Study of Training Peer Recovery Specialists in Behavioral Activation in the United States: Preliminary Outcomes and Predictors of Competence

    Get PDF
    BACKGROUND: The peer recovery specialist (PRS) workforce has rapidly expanded to increase access to substance-use disorder services for underserved communities. PRSs are not typically trained in evidence-based interventions (EBIs) outside of motivational interviewing, although evidence demonstrates the feasibility of PRS delivery of certain EBIs, such as a brief behavioral intervention, behavioral activation. However, characteristics that predict PRS competency in delivering EBIs such as behavioral activation remain unknown, and are critical for PRS selection, training, and supervision if the PRS role is expanded. This study aimed to explore the outcomes of a brief PRS training period in behavioral activation and identify predictors of competence. METHOD: Twenty PRSs in the United States completed a two-hour training on PRS-delivered behavioral activation. Participants completed baseline and post-training assessments, including roleplay and assessments of PRS characteristics, attitudes towards EBIs, and theoretically relevant personality constructs. Roleplays were coded for competence (behavioral activation specific and PRS skills more broadly, i.e., PRS competence) and changes were assessed from baseline to post-training. Linear regression models tested factors predicting post-training competence, controlling for baseline competence. RESULTS: There was a significant pre-post increase in behavioral activation competence (t = -7.02, p \u3c 0.001). Years working as a PRS significantly predicted post-training behavioral activation skills (B = 0.16, p = 0.005). No variables predicted post-training PRS competence. CONCLUSIONS: This study provides preliminary evidence that behavioral activation may be appropriate for dissemination to PRSs through brief trainings, particularly for PRSs with more work experience. However, additional research is needed to examine predictors of competence among PRSs

    Sometimes you have to take the person and show them how : adapting behavioral activation for peer recovery specialist-delivery to improve methadone treatment retention

    Get PDF
    BACKGROUND: Despite efficacy of medication for opioid use disorder, low-income, ethno-racial minoritized populations often experience poor opioid use disorder treatment outcomes. Peer recovery specialists, individuals with lived experience of substance use and recovery, are well-positioned to engage hard-to-reach patients in treatment for opioid use disorder. Traditionally, peer recovery specialists have focused on bridging to care rather than delivering interventions. This study builds on research in other low-resource contexts that has explored peer delivery of evidence-based interventions, such as behavioral activation, to expand access to care. METHODS: We sought feedback on the feasibility and acceptability of a peer recovery specialist-delivered behavioral activation intervention supporting retention in methadone treatment by increasing positive reinforcement. We recruited patients and staff at a community-based methadone treatment center and peer recovery specialist working across Baltimore City, Maryland, USA. Semi-structured interviews and focus groups inquired about the feasibility and acceptability of behavioral activation, recommendations for adaptation, and acceptability of working with a peer alongside methadone treatment. RESULTS: Participants (N = 32) shared that peer recovery specialist-delivered behavioral activation could be feasible and acceptable with adaptations. They described common challenges associated with unstructured time, for which behavioral activation could be particularly relevant. Participants provided examples of how a peer-delivered intervention could fit well in the context of methadone treatment, emphasizing the importance of flexibility and specific peer qualities. CONCLUSIONS: Improving medication for opioid use disorder outcomes is a national priority that must be met with cost-effective, sustainable strategies to support individuals in treatment. Findings will guide adaptation of a peer recovery specialist-delivered behavioral activation intervention to improve methadone treatment retention for underserved, ethno-racial minoritized individuals living with opioid use disorder

    Spin flop and crystalline anisotropic magnetoresistance in CuMnAs

    Get PDF
    Recent research works have shown that the magnetic order in some antiferromagnetic materials can be manipulated and detected electrically, due to two physical mechanisms: Neel-order spin-orbit torques and anisotropic magnetoresistance. While these observations open up opportunities to use antiferromagnets for magnetic memory devices, different physical characterization methods are required for a better understanding of those mechanisms. Here we report a magnetic field induced rotation of the antiferromagnetic Neel vector in epitaxial tetragonal CuMnAs thin films. Using soft x-ray magnetic linear dichroism spectroscopy, x-ray photoemission electron microscopy, integral magnetometry and magneto-transport methods, we demonstrate spin-flop switching and continuous spin reorientation in antiferromagnetic films with uniaxial and biaxial magnetic anisotropies, respectively. From field-dependent measurements of the magnetization and magnetoresistance, we obtain key material parameters including the anisotropic magnetoresistance coefficients, magnetocrystalline anisotropy, spin-flop and exchange fields.Comment: 26 pages, 6 figure

    Salivary Glucose Oxidase from Caterpillars Mediates the Induction of Rapid and Delayed-Induced Defenses in the Tomato Plant

    Get PDF
    Caterpillars produce oral secretions that may serve as cues to elicit plant defenses, but in other cases these secretions have been shown to suppress plant defenses. Ongoing work in our laboratory has focused on the salivary secretions of the tomato fruitworm, Helicoverpa zea. In previous studies we have shown that saliva and its principal component glucose oxidase acts as an effector by suppressing defenses in tobacco. In this current study, we report that saliva elicits a burst of jasmonic acid (JA) and the induction of late responding defense genes such as proteinase inhibitor 2 (Pin2). Transcripts encoding early response genes associated with the JA pathway were not affected by saliva. We also observed a delayed response to saliva with increased densities of Type VI glandular trichomes in newly emerged leaves. Proteomic analysis of saliva revealed glucose oxidase (GOX) was the most abundant protein identified and we confirmed that it plays a primary role in the induction of defenses in tomato. These results suggest that the recognition of GOX in tomato may represent a case for effector-triggered immunity. Examination of saliva from other caterpillar species indicates that saliva from the noctuids Spodoptera exigua and Heliothis virescens also induced Pin2 transcripts

    Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation

    Get PDF
    Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown whether the defence against pathogens induced in the plant also interferes with the indirect defence against herbivores mediated via the third trophic level. We previously showed that infection of plants with Tomato spotted wilt virus (TSWV) increased the developmental rate of and juvenile survival of its vector, the thrips Frankliniella occidentalis. Here, we present the results of a study on the effects of TSWV infections of plants on the effectiveness of three species of natural enemies of F. occidentalis: the predatory mites Neoseiulus cucumeris and Iphiseius degenerans, and the predatory bug Orius laevigatus. The growth rate of thrips larvae was positively affected by the presence of virus in the host plant. Because large larvae are invulnerable to predation by the two species of predatory mites, this resulted in a shorter period of vulnerability to predation for thrips that developed on plants with virus than thrips developing on uninfected plants (4.4 vs. 7.9 days, respectively). Because large thrips larvae are not invulnerable to predation by the predatory bug Orius laevigatus, infection of the plant did not affect the predation risk of thrips larvae from this predator. This is the first demonstration of a negative effect of a plant pathogen on the predation risk of its vector

    Insect Eggs Can Enhance Wound Response in Plants: A Study System of Tomato Solanum lycopersicum L. and Helicoverpa zea Boddie

    Get PDF
    Insect oviposition on plants frequently precedes herbivory. Accumulating evidence indicates that plants recognize insect oviposition and elicit direct or indirect defenses to reduce the pressure of future herbivory. Most of the oviposition-triggered plant defenses described thus far remove eggs or keep them away from the host plant or their desirable feeding sites. Here, we report induction of antiherbivore defense by insect oviposition which targets newly hatched larvae, not the eggs, in the system of tomato Solanum lycopersicum L., and tomato fruitworm moth Helicoverpa zea Boddie. When tomato plants were oviposited by H. zea moths, pin2, a highly inducible gene encoding protease inhibitor2, which is a representative defense protein against herbivorous arthropods, was expressed at significantly higher level at the oviposition site than surrounding tissues, and expression decreased with distance away from the site of oviposition. Moreover, more eggs resulted in higher pin2 expression in leaves, and both fertilized and unfertilized eggs induced pin2 expression. Notably, when quantified daily following deposition of eggs, pin2 expression at the oviposition site was highest just before the emergence of larvae. Furthermore, H. zea oviposition primed the wound-induced increase of pin2 transcription and a burst of jasmonic acid (JA); tomato plants previously exposed to H. zea oviposition showed significantly stronger induction of pin2 and higher production of JA upon subsequent simulated herbivory than without oviposition. Our results suggest that tomato plants recognize H. zea oviposition as a signal of impending future herbivory and induce defenses to prepare for this herbivory by newly hatched neonate larvae

    Photochemical dihydrogen production using an analogue of the active site of [NiFe] hydrogenase

    Get PDF
    The photoproduction of dihydrogen (H2) by a low molecular weight analogue of the active site of [NiFe] hydrogenase has been investigated by the reduction of the [NiFe2] cluster, 1, by a photosensitier PS (PS = [ReCl(CO)3(bpy)] or [Ru(bpy)3][PF6]2). Reductive quenching of the 3MLCT excited state of the photosensitiser by NEt3 or N(CH2CH2OH)3 (TEOA) generates PS•−, and subsequent intermolecular electron transfer to 1 produces the reduced anionic form of 1. Time-resolved infrared spectroscopy (TRIR) has been used to probe the intermediates throughout the reduction of 1 and subsequent photocatalytic H2 production from [HTEOA][BF4], which was monitored by gas chromatography. Two structural isomers of the reduced form of 1 (1a•− and 1b•−) were detected by Fourier transform infrared spectroscopy (FTIR) in both CH3CN and DMF (dimethylformamide), while only 1a•− was detected in CH2Cl2. Structures for these intermediates are proposed from the results of density functional theory calculations and FTIR spectroscopy. 1a•− is assigned to a similar structure to 1 with six terminal carbonyl ligands, while calculations suggest that in 1b•− two of the carbonyl groups bridge the Fe centres, consistent with the peak observed at 1714 cm−1 in the FTIR spectrum for 1b•− in CH3CN, assigned to a ν(CO) stretching vibration. The formation of 1a•− and 1b•− and the production of H2 was studied in CH3CN, DMF and CH2Cl2. Although the more catalytically active species (1a•− or 1b•−) could not be determined, photocatalysis was observed only in CH3CN and DMF
    corecore