127 research outputs found

    Correlation length of hydrophobic polyelectrolyte solutions

    Full text link
    The combination of two techniques (Small Angle X-ray Scattering and Atomic Force Microscopy) has allowed us to measure in reciprocal and real space the correlation length ξ\xi of salt-free aqueous solutions of highly charged hydrophobic polyelectrolyte as a function of the polymer concentration CpC_p, charge fraction ff and chain length NN. Contrary to the classical behaviour of hydrophilic polyelectrolytes in the strong coupling limit, ξ\xi is strongly dependent on ff. In particular a continuous transition has been observed from ξCp1/2\xi \sim C_p^{-1/2} to ξCp1/3\xi\sim C_p^{-1/3} when ff decreased from 100% to 35%. We interpret this unusual behaviour as the consequence of the two features characterising the hydrophobic polyelectrolytes: the pearl necklace conformation of the chains and the anomalously strong reduction of the effective charge fraction.Comment: 7 pages, 5 figures, submitted to Europhysics Letter

    On the pearl size of hydrophobic polyelectrolytes

    Full text link
    Hydrophobic polyelectrolytes have been predicted to adopt an unique pearl-necklace conformation in aqueous solvents. We present in this Letter an attempt to characterise quantitatively this conformation with a focus on DpD_p, the pearl size. For this purpose polystyrenesulfonate (PSS) of various effective charge fractions fefff_{eff} and chain lengths NN has been adsorbed onto oppositely charged surfaces immersed in water in condition where the bulk structure is expected to persist in the adsorbed state. \emph{In situ} ellipsometry has provided an apparent thickness happh_{app} of the PSS layer. In the presence of added salts, we have found: happaN0feff2/3h_{app}\sim aN^{0}f_{eff}^{-2/3} (aa is the monomer size) in agreement with the scaling predictions for DpD_p in the pearl-necklace model if one interprets happh_{app} as a measure of the pearl size. At the lowest charge fractions we have found happaN1/3h_{app}\sim aN^{1/3} for the shorter chains, in agreement with a necklace/globule transition.Comment: 7 pages, 4 figures, 1 table. Published in Europhysics Letters, Vol. 62, Number 1, pp. 110-116 (2003

    Counterion adsorption on flexible polyelectrolytes: comparison of theories

    Full text link
    Counterion adsorption on a flexible polyelectrolyte chain in a spherical cavity is considered by taking a "permuted" charge distribution on the chain so that the "adsorbed" counterions are allowed to move along the backbone. We compute the degree of ionization by using self-consistent field theory (SCFT) and compare with the previously developed variational theory. Analysis of various contributions to the free energy in both theories reveals that the equilibrium degree of ionization is attained mainly as an interplay of the adsorption energy of counterions on the backbone, the translational entropy of the small ions, and their correlated density fluctuations. Degree of ionization computed from SCFT is significantly lower than that from the variational formalism. The difference is entirely due to the density fluctuations of the small ions in the system, which are accounted for in the variational procedure. When these fluctuations are deliberately suppressed in the truncated variational procedure, there emerges a remarkable quantitative agreement in the various contributing factors to the equilibrium degree of ionization, in spite of the fundamental differences in the approximations and computational procedures used in these two schemes. Nevertheless, since the significant effects from density fluctuations of small ions are not captured by the SCFT, and due to the close agreement between SCFT and the other contributing factors in the more transparent variational procedure, the latter is a better computational tool for obtaining the degree of ionization

    Mutations in HNF1A Result in Marked Alterations of Plasma Glycan Profile

    Get PDF
    A recent genome-wide association study identified hepatocyte nuclear factor 1-α (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MODY) would display altered fucosylation of N-linked glycans on plasma proteins and that glycan biomarkers could improve the efficiency of a diagnosis of HNF1A-MODY. In a pilot comparison of 33 subjects with HNF1A-MODY and 41 subjects with type 2 diabetes, 15 of 29 glycan measurements differed between the two groups. The DG9-glycan index, which is the ratio of fucosylated to nonfucosylated triantennary glycans, provided optimum discrimination in the pilot study and was examined further among additional subjects with HNF1A-MODY (n = 188), glucokinase (GCK)-MODY (n = 118), hepatocyte nuclear factor 4-α (HNF4A)-MODY (n = 40), type 1 diabetes (n = 98), type 2 diabetes (n = 167), and nondiabetic controls (n = 98). The DG9-glycan index was markedly lower in HNF1A-MODY than in controls or other diabetes subtypes, offered good discrimination between HNF1A-MODY and both type 1 and type 2 diabetes (C statistic ≥ 0.90), and enabled us to detect three previously undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction

    Influence of the Water Content on the Diffusion Coefficients of Li⁺ and Water across Naphthalenic Based Copolyimide Cation-Exchange Membranes

    Get PDF
    The transport of lithium ions in cation-exchange membranes based on sulfonated copolyimide membranes is reported. Diffusion coefficients of lithium are estimated as a function of the water content in membranes by using pulsed field gradient (PFG) NMR and electrical conductivity techniques. It is found that the lithium transport slightly decreases with the diminution of water for membranes with water content lying in the range 14 < λ < 26.5, where λ is the number of molecules of water per fixed sulfonate group. For λ < 14, the value of the diffusion coefficient of lithium experiences a sharp decay with the reduction of water in the membranes. The dependence of the diffusion of lithium on the humidity of the membranes calculated from conductivity data using Nernst–Planck type equations follows a trend similar to that observed by NMR. The possible explanation of the fact that the Haven ratio is higher than the unit is discussed. The diffusion of water estimated by 1H PFG-NMR in membranes neutralized with lithium decreases as λ decreases, but the drop is sharper in the region where the decrease of the diffusion of protons of water also undergoes considerable reduction. The diffusion of lithium ions computed by full molecular dynamics is similar to that estimated by NMR. However, for membranes with medium and low concentration of water, steady state conditions are not reached in the computations and the diffusion coefficients obtained by MD simulation techniques are overestimated. The curves depicting the variation of the diffusion coefficient of water estimated by NMR and full dynamics follow parallel trends, though the values of the diffusion coefficient in the latter case are somewhat higher. The WAXS diffractograms of fully hydrated membranes exhibit the ionomer peak at q = 2.8 nm⁻1, the peak being shifted to higher q as the water content of the membranes decreases. The diffractograms present additional peaks at higher q, common to wet and dry membranes, but the peaks are better resolved in the wet membranes. The ionomer peak is not detected in the diffractograms of dry membranes.The authors acknowledge financial support provided by the DGICYT (Dirección General de Investigación Cientifíca y Tecnológica) through Grant MAT2011-29174-C02-02

    Towards a TILLING platform for functional genomics in Piel de Sapo melons

    Get PDF
    Background The availability of genetic and genomic resources for melon has increased significantly, but functional genomics resources are still limited for this crop. TILLING is a powerful reverse genetics approach that can be utilized to generate novel mutations in candidate genes. A TILLING resource is available for cantalupensis melons, but not for inodorus melons, the other main commercial group. Results A new ethyl methanesulfonate-mutagenized (EMS) melon population was generated for the first time in an andromonoecious non-climacteric inodorus Piel de Sapo genetic background. Diverse mutant phenotypes in seedlings, vines and fruits were observed, some of which were of possible commercial interest. The population was first screened for mutations in three target genes involved in disease resistance and fruit quality (Cm-PDS, Cm-eIF4E and Cm-eIFI(iso)4E). The same genes were also tilled in the available monoecious and climacteric cantalupensis EMS melon population. The overall mutation density in this first Piel de Sapo TILLING platform was estimated to be 1 mutation/1.5 Mb by screening four additional genes (Cm-ACO1, Cm-NOR, Cm-DET1 and Cm-DHS). Thirty-three point mutations were found for the seven gene targets, six of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was demonstrated for a loss-of-function mutation in the Phytoene desaturase gene, which is involved in carotenoid biosynthesis. Conclusions The TILLING approach was successful at providing new mutations in the genetic background of Piel de Sapo in most of the analyzed genes, even in genes for which natural variation is extremely low. This new resource will facilitate reverse genetics studies in non-climacteric melons, contributing materially to future genomic and breeding studies.González, M.; Xu, M.; Esteras Gómez, C.; Roig Montaner, MC.; Monforte Gilabert, AJ.; Troadec, C.; Pujol, M.... (2011). Towards a TILLING platform for functional genomics in Piel de sapo melons. BMC Research Notes. 4(289):289-299. doi:10.1186/1756-0500-4-289S2892994289The International Cucurbit Genomics Initiative (ICuGI). [ http://www.icugi.org ]González-Ibeas D, Blanca J, Roig C, González-To M, Picó B, Truniger V, Gómez P, Deleu W, Caño-Delgado A, Arús P, Nuez F, García-Mas J, Puigdomènech P, Aranda MA: MELOGEN: an EST database for melon functional genomics. BMC Genomics. 2007, 8: 306-10.1186/1471-2164-8-306.Fita A, Picó B, Monforte A, Nuez F: Genetics of Root System Architecture Using Near-isogenic Lines of Melon. J Am Soc Hortic Sci. 2008, 133: 448-458.Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Picó B, Nuez F, Arús P, Garcia-Mas J, Monforte AJ: Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet. 2008, 118: 139-150. 10.1007/s00122-008-0883-3.Deleu W, Esteras C, Roig C, González-To M, Fernández-Silva I, Blanca J, Aranda MA, Arús P, Nuez F, Monforte AJ, Picó MB, Garcia-Mas J: A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol. 2009, 9: 90-10.1186/1471-2229-9-90.Mascarell-Creus A, Cañizares J, Vilarrasa J, Mora-García S, Blanca J, González-Ibeas D, Saladié M, Roig C, Deleu W, Picó B, López-Bigas N, Aranda MA, Garcia-Mas J, Nuez F, Puigdomènech P, Caño-Delgado A: An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics. 2009, 10: 467-10.1186/1471-2164-10-467.Blanca JM, Cañizares J, Ziarsolo P, Esteras C, Mir G, Nuez F, Garcia-Mas J, Pico B: Melon transcriptome characterization. SSRs and SNPs discovery for high throughput genotyping across the species. Plant Genome. 2011, 4 (2): 118-131. 10.3835/plantgenome2011.01.0003.González VM, Benjak A, Hénaff EM, Mir G, Casacuberta JM, Garcia-Mas J, Puigdomènech P: Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy. BMC Plant Biology. 2010, 10: 246-10.1186/1471-2229-10-246.Moreno E, Obando JM, Dos-Santos N, Fernández-Trujillo JP, Monforte AJ, Garcia-Mas J: Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet. 2007, 116: 589-602.Essafi A, Díaz-Pendón JA, Moriones E, Monforte AJ, Garcia-Mas J, Martín-Hernández AM: Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession PI 161375. Theor Appl Genet. 2009, 118: 275-284. 10.1007/s00122-008-0897-x.Comai L, Henikoff S: TILLING: practical single-nucleotide mutation discovery. Plant J. 2006, 45: 684-94. 10.1111/j.1365-313X.2006.02670.x.Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, et al: TILLING to detect induced mutations in soybean. BMC Plant Biol. 2008, 8 (1): 9-10.1186/1471-2229-8-9.Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, de Oliveira Y, Guichard C, Thompson R, Bendahmane A: UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol. 2008, 9: R43-10.1186/gb-2008-9-2-r43.Dierking EC, Bilyeu KD: New sources of soybean meal and oil composition traits identified through TILLING. BMC Plant Biol. 2009, 9: 89-10.1186/1471-2229-9-89.Perry J, Brachmann A, Welham T, Binder A, Charpentier M, Groth M, Haage K, Markmann K, Wang TL, Parniske M: TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements. Plant Physiol. 2009, 151 (3): 1281-1291. 10.1104/pp.109.142190.Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R: A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J. 2004, 40 (1): 143-150. 10.1111/j.1365-313X.2004.02190.x.Henikoff S, Bradley JT, Comai L: TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 2004, 135: 630-636. 10.1104/pp.104.041061.Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, et al: Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol. 2005, 59 (1): 85-97. 10.1007/s11103-004-5112-0.Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D: A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol. 2005, 23: 75-81. 10.1038/nbt1043.Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L: Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 2007, 7: 19-10.1186/1471-2229-7-19.Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J: Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol. 2008, 8: 103-10.1186/1471-2229-8-103.Dong C, Dalton-Morgan J, Vincent K, Sharp P: A modified TILLING method for wheat breeding. Plant Genome. 2009, 2: 39-47. 10.3835/plantgenome2008.10.0012.Sestili F, Botticella E, Bedo Z, Phillips A, Lafiandra D: Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol Breeding. 2010, 25: 145-154. 10.1007/s11032-009-9314-7.Watanabe S, Mizoguchi T, Aoki K, Kubo Y, Mori H, Imanishi S, Yamazaki Y, Shibata D, Ezura H: Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens. Plant Biotech. 2007, 24: 33-38. 10.5511/plantbiotechnology.24.33.Elias R, Till BJ, Mba Ch, Al-Safadi B: Optimizing TILLING and Ecotilling techniques for potato (Solanum tuberosum L). BMC Res Notes. 2009, 2: 141-10.1186/1756-0500-2-141.Piron F, Nicolaı M, Minoıa S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A: An induced mutation in tomato eIF4E leads to immunity to two Potyviruses. PLoS ONE. 2010, 5 (6): e11313-10.1371/journal.pone.0011313.Himelblau E, Gilchrist EJ, Buono K, Bizell C, Mentzer L, Vogelzang R, Osborn T, Amasino RM, Parkin IAP, Haughn : Forward and reverse genetics of papid cycling Brassica oleracea. Theor Appl Genet. 2009, 118: 953-961. 10.1007/s00122-008-0952-7.Stephenson P, Baker D, Girin T, Perez A, Amoah S, King GJ, Østergaard L: A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol. 2010, 10: 62-10.1186/1471-2229-10-62.Pitrat M: Melon (Cucumis melo L.). Handbook of Crop Breeding Vol I. Vegetables. Edited by: Prohens J, Nuez F. 2008, New York:Springer, 283-315.Dahmani-Mardas F, Troadec Ch, Boualem A, Leveque S, Alsadon AA, Aldoss AA, Dogimont C, Bendahman A: Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach. PLoS ONE. 2010, 5: e15776-10.1371/journal.pone.0015776.Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gómez-Guillamón ML, Truniger V, Gómez P, Garcia-Mas J, Aranda MA, Bendahmane A: EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol. 2007, 7: 34-10.1186/1471-2229-7-34.Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ: Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res. 2007, 17: 471-482. 10.1038/cr.2007.40.Codons Optimized to Deliver Deleterious Lesions (CODDLe). [ http://www.proweb.org/input ]Lasserre E, Bouquin T, Hernández JA, Bull J, Pech JC, Balague C: Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol Gen Genet. 1996, 251 (1): 81-90.Giovannoni JJ: Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol. 2007, 10: 1-7. 10.1016/j.pbi.2006.11.012.Davuluri GR, van Tuinen A, Mustilli AC, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Pennings HMJ, Bowler C: Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J. 2004, 40: 344-354. 10.1111/j.1365-313X.2004.02218.x.Wei S, Li X, Gruber MI, Li R, Zhou R, Zebarjadi A, Hannoufa A: RNAi-mediated suppression of DET1 alters the levels of carotenoids and sinapate esters in seeds of Brassica napus. J Agric Food Chem. 2009, 57 (12): 5326-5333. 10.1021/jf803983w.Wang TW, Zhang CG, Wu W, Nowack LM, Madey E, Thompson JE: Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development DHS mediates the first of two sequential enzymatic reactions that activate eukaryotic translation initiation factor-5A. Plant Physiol. 2005, 138: 1372-1382. 10.1104/pp.105.060194.Ng PC, Henikoff S: SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31 (13): 3812-3814. 10.1093/nar/gkg509.Guzman P, Ecker JR: Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. The Plant Cell. 1990, 2: 513-523.Henikoff S, Comai L: Single-nucleotide mutations for plant functional genomics. Ann Rev Plant Biol. 2003, 54: 375-401. 10.1146/annurev.arplant.54.031902.135009.Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, et al: Spectrum of chemically induced mutations from a large-scale reverse genetic screen in Arabidopsis. Genetics. 2003, 164 (2): 731-740.Britt AB: DNA damage and repair in plants. Annu Rev Plant Physiol Plant Mol Biol. 1996, 47: 75-100. 10.1146/annurev.arplant.47.1.75.Truniger V, Nieto C, González-Ibeas D, Aranda M: Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlled in cis by an (a)virulence determinant. Plant J. 2008, 56 (5): 716-727. 10.1111/j.1365-313X.2008.03630.x.Gao Z, Johansen E, Eyers S, Thomas CL, Ellis THN, Maule AJ: The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 2004, 40 (3): 376-385. 10.1111/j.1365-313X.2004.02215.x.Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM: The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J. 2005, 42 (3): 392-405. 10.1111/j.1365-313X.2005.02381.x.Ruffel S, Gallois J, Lesage M, Caranta C: The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eiF4 genes. Mol Genet Genom. 2005, 274 (4): 346-353. 10.1007/s00438-005-0003-x.Nicaise V, German-Retana S, Sanjuán R, Dubrana MP, Mazier M, Maisonneuve B, Candresse T, Caranta C, LeGall O: The Eukaryotic Translation Initiation Factor 4E Controls Lettuce Susceptibility to the Potyvirus Lettuce mosaic virus1. Plant Physiol. 2003, 132: 1272-1282. 10.1104/pp.102.017855.Esteras C, Pascual L, Saladie M, Dogimont C, Garcia-Mas J, Nuez F, Picó B: Use of Ecotilling to identify natural allelic variants of melon candidate genes involved in fruit ripening. Proceedings Plant GEM8 Lisbon. 2009Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A: The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor Appl Genet. 2003, 106: 454-460.Kolotilin I, Koltai H, Tadmor Y, Bar-Or C, Reuveni M, Meir A, Nahon S, Shlomo S, Chen L, I Levin: Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol. 2007, 145: 389-401. 10.1104/pp.107.102962

    Downregulation of the AU-Rich RNA-Binding Protein ZFP36 in Chronic HBV Patients: Implications for Anti-Inflammatory Therapy

    Get PDF
    Inflammation caused by chronic hepatitis B virus (HBV) infection is associated with the development of cirrhosis and hepatocellular carcinoma; however, the mechanisms by which HBV infection induces inflammation and inflammatory cytokine production remain largely unknown. We analyzed the gene expression patterns of lymphocytes from chronic HBV-infected patients and found that the expression of ZFP36, an AU-rich element (ARE)-binding protein, was dramatically reduced in CD4+ and CD8+ T lymphocytes from chronic HBV patients. ZFP36 expression was also reduced in CD14+ monocytes and in total PBMCs from chronic HBV patients. To investigate the functional consequences of reduced ZFP36 expression, we knocked down ZFP36 in PBMCs from healthy donors using siRNA. siRNA-mediated silencing of ZFP36 resulted in dramatically increased expression of multiple inflammatory cytokines, most of which were also increased in the plasma of chronic HBV patients. Furthermore, we found that IL-8 and RANTES induced ZFP36 downregulation, and this effect was mediated through protein kinase C. Importantly, we found that HBsAg stimulated PBMCs to express IL-8 and RANTES, resulting in decreased ZFP36 expression. Our results suggest that an inflammatory feedback loop involving HBsAg, ZFP36, and inflammatory cytokines may play a critical role in the pathogenesis of chronic HBV and further indicate that ZFP36 may be an important target for anti-inflammatory therapy during chronic HBV infection

    Kaposin-B Enhances the PROX1 mRNA Stability during Lymphatic Reprogramming of Vascular Endothelial Cells by Kaposi's Sarcoma Herpes Virus

    Get PDF
    Kaposi's sarcoma (KS) is the most common cancer among HIV-positive patients. Histogenetic origin of KS has long been elusive due to a mixed expression of both blood and lymphatic endothelial markers in KS tumor cells. However, we and others discovered that Kaposi's sarcoma herpes virus (KSHV) induces lymphatic reprogramming of blood vascular endothelial cells by upregulating PROX1, which functions as the master regulator for lymphatic endothelial differentiation. Here, we demonstrate that the KSHV latent gene kaposin-B enhances the PROX1 mRNA stability and plays an important role in KSHV-mediated PROX1 upregulation. We found that PROX1 mRNA contains a canonical AU-rich element (ARE) in its 3′-untranslated region that promotes PROX1 mRNA turnover and that kaposin-B stimulates cytoplasmic accumulation of the ARE-binding protein HuR through activation of the p38/MK2 pathway. Moreover, HuR binds to and stabilizes PROX1 mRNA through its ARE and is necessary for KSHV-mediated PROX1 mRNA stabilization. Together, our study demonstrates that kaposin-B plays a key role in PROX1 upregulation during lymphatic reprogramming of blood vascular endothelial cells by KSHV

    Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements

    Get PDF
    A considerable number of genes that code for AU-rich mRNAs including cytokines, growth factors, transcriptional factors, and certain receptors are involved in both chronic inflammation and cancer. Overexpression of these genes is affected by aberrations or by prolonged activation of several signaling pathways. AU-rich elements (ARE) are important cis-acting short sequences in the 3′UTR that mediate recognition of an array of RNA-binding proteins and affect mRNA stability and translation. This review addresses the cellular and molecular mechanisms that are common between inflammation and cancer and that also govern ARE-mediated post-transcriptional control. The first part examines the role of the ARE-genes in inflammation and cancer and sequence characteristics of AU-rich elements. The second part addresses the common signaling pathways in inflammation and cancer that regulate the ARE-mediated pathways and how their deregulations affect ARE-gene regulation and disease outcome

    Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation

    Full text link
    corecore