4,973 research outputs found
Space shuttle: Static aerodynamic and control investigation of an expendable second stage with payload alone and with delta wing booster (B-15B-1)
Aerodynamic force and moment coefficients for scale model of expendable second stage modified S-2 alone and mounted piggyback on space shuttle booster from Mach 0.6 to 4.9
Hubbard model versus t-J model: The one-particle spectrum
The origin of the apparent discrepancies between the one-particle spectra of
the Hubbard and t-J models is revealed: Wavefunction corrections, in addition
to the three-site terms, should supplement the bare t-J. In this way a
quantitative agreement between the two models is obtained, even for the
intermediate- values appropriate for the high-Tc cuprate superconductors.
Numerical results for clusters of up to 20 sites are presented. The momentum
dependence of the observed intensities in the photoemission spectra of
Sr2CuO2Cl2 are well described by this complete strong-coupling approach.Comment: 4 two-column RevTeX pages, including 4 Postscript figures. Uses epsf.
Accepted for publication in Physical Review B, Rapid Communicatio
Space shuttle: Static stability and control investigation of NR/GD delta wing booster (B-20) and delta wing orbiter (134D), volume 1
Experimental aerodynamic investigations have been made on a .0035 scale model North American Rockwell/General Dynamics version of the space shuttle. Static stability and control data were obtained on the delta wing booster alone (B-20) and with the delta wing orbiter (134D) mounted in various positions on the booster. Six component aerodynamic force and moment data were recorded over an angle of attack range from -10 deg to 24 deg at 0 deg and 6 deg sideslip angles and from -10 deg to +10 deg sideslip at 0 deg angle of attack. Mach number ranged from 0.6 to 4.96
High Multiplicity Searches at the LHC Using Jet Masses
This article introduces a new class of searches for physics beyond the
Standard Model that improves the sensitivity to signals with high jet
multiplicity. The proposed searches gain access to high multiplicity signals by
reclustering events into large-radius, or "fat," jets and by requiring that
each event has multiple massive jets. This technique is applied to
supersymmetric scenarios in which gluinos are pair-produced and then
subsequently decay to final states with either moderate quantities of missing
energy or final states without missing energy. In each of these scenarios, the
use of jet mass improves the estimated reach in gluino mass by 20 % to 50 %
over current LHC searches.Comment: 9 pages, 6 figures; v3 corrects a few small typo
Tail-induced spin-orbit effect in the gravitational radiation of compact binaries
Gravitational waves contain tail effects which are due to the back-scattering
of linear waves in the curved space-time geometry around the source. In this
paper we improve the knowledge and accuracy of the two-body inspiraling
post-Newtonian (PN) dynamics and gravitational-wave signal by computing the
spin-orbit terms induced by tail effects. Notably, we derive those terms at 3PN
order in the gravitational-wave energy flux, and 2.5PN and 3PN orders in the
wave polarizations. This is then used to derive the spin-orbit tail effects in
the phasing through 3PN order. Our results can be employed to carry out more
accurate comparisons with numerical-relativity simulations and to improve the
accuracy of analytical templates aimed at describing the whole process of
inspiral, merger and ringdown.Comment: Minor corrections. To be published in Physical Review
Inverse photoemission in strongly correlated electron systems
Based on exact results for small clusters of 2D t-J model we demonstrate the
existence of several distinct `channels' in its inverse photoemission (IPES)
spectrum. Hole-like quasiparticles can either be annihilated completely, or
leave behind a variable number of spin excitations, which formed the `dressing
cloud' of the annihilated hole. In the physical parameter regime the latter
processes carry the bulk of IPES weight and although the Fermi surface takes
the form of hole pockets, the distribution of spectal weight including these
`magnon-bands' in the IPES spectrum is reminiscent of free electrons. The
emerging scenario for Fermiology and spectral weight distribution is shown to
be consistent with photoemission, inverse photemission and de Haas--van Alphen
experiments on cuprate superconductors.Comment: Revtex file, 4 PRB pages + three figures appended as uu-encoded
postscript. Hardcopies of figures (or the entire manuscript) can also be
obtained by e-mail request to: [email protected]
Excitation spectrum of the homogeneous spin liquid
We discuss the excitation spectrum of a disordered, isotropic and
translationally invariant spin state in the 2D Heisenberg antiferromagnet. The
starting point is the nearest-neighbor RVB state which plays the role of the
vacuum of the theory, in a similar sense as the Neel state is the vacuum for
antiferromagnetic spin wave theory. We discuss the elementary excitations of
this state and show that these are not Fermionic spin-1/2 `spinons' but spin-1
excited dimers which must be modeled by bond Bosons. We derive an effective
Hamiltonian describing the excited dimers which is formally analogous to spin
wave theory. Condensation of the bond-Bosons at zero temperature into the state
with momentum (pi,pi) is shown to be equivalent to antiferromagnetic ordering.
The latter is a key ingredient for a microscopic interpretation of Zhang's
SO(5) theory of cuprate superconductivityComment: RevTex-file, 16 PRB pages with 13 embedded eps figures. Hardcopies of
figures (or the entire manuscript) can be obtained by e-mail request to:
[email protected]
Single-hole dynamics in the half-filled two-dimensional Kondo-Hubbard model
We consider the Kondo lattice model in two dimensions at half filling. In
addition to the fermionic hopping integral and the superexchange coupling
the role of a Coulomb repulsion in the conduction band is investigated.
We find the model to display a magnetic order-disorder transition in the U-J
plane with a critical value of J_c which is decreasing as a function of U. The
single particle spectral function A(k,w) is computed across this transition.
For all values of J > 0, and apart from shadow features present in the ordered
state, A(k,w) remains insensitive to the magnetic phase transition with the
first low-energy hole states residing at momenta k = (\pm \pi, \pm \pi). As J
-> 0 the model maps onto the Hubbard Hamiltonian. Only in this limit, the
low-energy spectral weight at k = (\pm \pi, \pm \pi) vanishes with first
electron removal-states emerging at wave vectors on the magnetic Brillouin zone
boundary. Thus, we conclude that (i) the local screening of impurity spins
determines the low energy behavior of the spectral function and (ii) one cannot
deform continuously the spectral function of the Mott-Hubbard insulator at J=0
to that of the Kondo insulator at J > J_c. Our results are based on both, T=0
Quantum Monte-Carlo simulations and a bond-operator mean-field theory.Comment: 8 pages, 7 figures. Submitted to PR
- …
