64 research outputs found

    Angiotensin II Facilitates Breast Cancer Cell Migration and Metastasis

    Get PDF
    Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors

    Seagrass and submerged aquatic vegetation (VAS) habitats off the Coast of Brazil: state of knowledge, conservation and main threats

    Get PDF
    Seagrass meadows are among the most threatened ecosystems on earth, raising concerns about the equilibrium of coastal ecosystems and the sustainability of local fisheries. The present review evaluated the current status of the research on seagrasses and submerged aquatic vegetation (SAV) habitats off the coast of Brazil in terms of plant responses to environmental conditions, changes in distribution and abundance, and the possible role of climate change and variability. Despite an increase in the number of studies, the communication of the results is still relatively limited and is mainly addressed to a national or regional public; thus, South American seagrasses are rarely included or cited in global reviews and models. The scarcity of large-scale and long-term studies allowing the detection of changes in the structure, abundance and composition of seagrass habitats and associated species still hinders the investigation of such communities with respect to the potential effects of climate change. Seagrass meadows and SAV occur all along the Brazilian coast, with species distribution and abundance being strongly influenced by regional oceanography, coastal water masses, river runoff and coastal geomorphology. Based on these geomorphological, hydrological and ecological features, we characterised the distribution of seagrass habitats and abundances within the major coastal compartments. The current conservation status of Brazilian seagrasses and SAV is critical. The unsustainable exploitation and occupation of coastal areas and the multifold anthropogenic footprints left during the last 100 years led to the loss and degradation of shoreline habitats potentially suitable for seagrass occupation. Knowledge of the prevailing patterns and processes governing seagrass structure and functioning along the Brazilian coast is necessary for the global discussion on climate change. Our review is a first and much-needed step toward a more integrated and inclusive approach to understanding the diversity of coastal plant formations along the Southwestern Atlantic coast as well as a regional alert the projected or predicted effects of global changes on the goods and services provided by regional seagrasses and SAV

    Microenvironmental adaptation of experimental tumours to chronic vs acute hypoxia

    Get PDF
    This study investigated long-term microenvironmental responses (oxygenation, perfusion, metabolic status, proliferation, vascular endothelial growth factor (VEGF) expression and vascularisation) to chronic hypoxia in experimental tumours. Experiments were performed using s.c.-implanted DS-sarcomas in rats. In order to induce more pronounced tumour hypoxia, one group of animals was housed in a hypoxic atmosphere (8% O2) for the whole period of tumour growth (chronic hypoxia). A second group was acutely exposed to inspiratory hypoxia for only 20 min prior to the measurements (acute hypoxia), whereas animals housed under normal atmospheric conditions served as controls. Acute hypoxia reduced the median oxygen partial pressure (pO2) dramatically (1 vs 10 mmHg in controls), whereas in chronically hypoxic tumours the pO2 was significantly improved (median pO2=4 mmHg), however not reaching the control level. These findings reflect the changes in tumour perfusion where acutely hypoxic tumours show a dramatic reduction of perfused tumour vessels (maybe the result of a simultaneous reduction in arterial blood pressure). In animals under chronic inspiratory hypoxia, the number of perfused vessels increased (compared to acute hypoxia), although the perfusion pattern found in control tumours was not reached. In the chronically hypoxic animals, tumour cell proliferation and tumour growth were significantly reduced, whereas no differences in VEGF expression and vascular density between these groups were observed. These results suggest that long-term adaptation of tumours to chronic hypoxia in vivo, while not affecting vascularity, does influence the functional status of the microvessels in favour of a more homogeneous perfusion
    corecore