262 research outputs found
Spatial distribution of bacteria associated with the marine sponge Tethya californiana
Microbial diversity and spatial distribution of the diversity within tissue of the marine sponge Tethya californiana was analyzed based on 16S rRNA gene sequences. One candidate division and nine bacterial phyla were detected, including members of all five subdivisions of Proteobacteria. Moreover, chloroplast-derived Stramenopiles- and Rhodophyta-affiliated 16S rRNA gene sequences were found and Stramenopiles represented the most abundant clones (30%) in the clone library. On the phylum-level, the microbial fingerprint of T. californiana showed a similar pattern as its Mediterranean relative T. aurantium. An interesting difference was that Cyanobacteria that were abundantly present in T. aurantium were not found in T. californiana, but that the latter sponges harbored phototrophic Stramenopiles instead. Surprisingly, the phototrophic microorganisms were evenly distributed over the inner and outer parts of the sponge tissue, which implies that they also reside in regions without direct light exposure. The other phyla were also present in both the outer cortex and the mesohyl of the sponges. These results were confirmed by analysis on the operational taxonomic unit level. This leads to the conclusion that from a qualitative point of view, spatial distribution of microorganisms in T. californiana tissue is quite homogeneous. Thirty-two percent of the operational taxonomic units shared less than 95% similarity with any other known sequence. This indicates that marine sponges are a rich source of previously undetected microbial life
Electromagnetic transitions of the helium atom in superstrong magnetic fields
We investigate the electromagnetic transition probabilities for the helium
atom embedded in a superstrong magnetic field taking into account the finite
nuclear mass. We address the regime \gamma=100-10000 a.u. studying several
excited states for each symmetry, i.e. for the magnetic quantum numbers
0,-1,-2,-3, positive and negative z parity and singlet and triplet symmetry.
The oscillator strengths as a function of the magnetic field, and in particular
the influence of the finite nuclear mass on the oscillator strengths are shown
and analyzed.Comment: 10 pages, 8 figure
Helium in superstrong magnetic fields
We investigate the helium atom embedded in a superstrong magnetic field
gamma=100-10000 au. All effects due to the finite nuclear mass for vanishing
pseudomomentum are taken into account. The influence and the magnitude of the
different finite mass effects are analyzed and discussed. Within our full
configuration interaction approach calculations are performed for the magnetic
quantum numbers M=0,-1,-2,-3, singlet and triplet states, as well as positive
and negative z parities. Up to six excited states for each symmetry are
studied. With increasing field strength the number of bound states decreases
rapidly and we remain with a comparatively small number of bound states for
gamma=10^4 au within the symmetries investigated here.Comment: 16 pages, including 14 eps figures, submitted to Phys. Rev.
Hydrogen molecule in a magnetic field: The lowest states of the Pi manifold and the global ground state of the parallel configuration
The electronic structure of the hydrogen molecule in a magnetic field is
investigated for parallel internuclear and magnetic field axes. The lowest
states of the manifold are studied for spin singlet and triplet as well as gerade and ungerade parity for a broad range of field
strengths For both states with gerade parity we
observe a monotonous decrease in the dissociation energy with increasing field
strength up to and metastable states with respect to the
dissociation into two H atoms occur for a certain range of field strengths. For
both states with ungerade parity we observe a strong increase in the
dissociation energy with increasing field strength above some critical field
strength . As a major result we determine the transition field strengths
for the crossings among the lowest , and
states. The global ground state for is the strongly
bound state. The crossings of the with the
and state occur at and , respectively. The transition between the and
state occurs at Therefore, the global ground state of the
hydrogen molecule for the parallel configuration is the unbound
state for The ground state for is the strongly bound state. This result is of great
relevance to the chemistry in the atmospheres of magnetic white dwarfs and
neutron stars.Comment: submitted to Physical Review
Development and Initial Validation of an Instrument to Measure Physicians' Use of, Knowledge about, and Attitudes Toward Computers
This paper describes details of four scales of a questionnaire—“Computers in Medical Care”—measuring attributes of computer use, self-reported computer knowledge, computer feature demand, and computer optimism of academic physicians. The reliability (i.e., precision, or degree to which the scale's result is reproducible) and validity (i.e., accuracy, or degree to which the scale actually measures what it is supposed to measure) of each scale were examined by analysis of the responses of 771 full-time academic physicians across four departments at five academic medical centers in the United States. The objectives of this paper were to define the psychometric properties of the scales as the basis for a future demonstration study and, pending the results of further validity studies, to provide the questionnaire and scales to the medical informatics community as a tool for measuring the attitudes of health care providers
Exchange and correlation energies of ground states of atoms and molecules in strong magnetic fields
Using a Hartree-Fock mesh method and a configuration interaction approach
based on a generalized Gaussian basis set we investigate the behaviour of the
exchange and correlation energies of small atoms and molecules, namely th e
helium and lithium atom as well as the hydrogen molecule, in the presence of a
magnetic field covering the regime B=0-100a.u. In general the importance of the
exchange energy to the binding properties of at oms or molecules increases
strongly with increasing field strength. This is due to the spin-flip
transitions and in particular due to the contributions of the tightly bound
hydrogenic state s which are involved in the corresponding ground states of
different symmetries. In contrast to the exchange energy the correlation energy
becomes less relevant with increasing field strength. This holds for the
individual configurations constituting the ground state and for the crossovers
of the global ground state.Comment: 4 Figures acc.f.publ.in Phys.Rev.
Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes
Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6), gentamicin (n=1), amikacin (n=7), trimethoprim (n=17), chloramphenicol (n=1), rifampicin (n=2) and ampicillin (n=3). Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria
A stimulus to define informatics and health information technology
<p>Abstract</p> <p>Background</p> <p>Despite the growing interest by leaders, policy makers, and others, the terminology of health information technology as well as biomedical and health informatics is poorly understood and not even agreed upon by academics and professionals in the field.</p> <p>Discussion</p> <p>The paper, presented as a Debate to encourage further discussion and disagreement, provides definitions of the major terminology used in biomedical and health informatics and health information technology. For informatics, it focuses on the words that modify the term as well as individuals who practice the discipline. Other categories of related terms are covered as well, from the associated disciplines of computer science, information technolog and health information management to the major application categories of applications used. The discussion closes with a classification of individuals who work in the largest segment of the field, namely clinical informatics.</p> <p>Summary</p> <p>The goal of presenting in Debate format is to provide a starting point for discussion to reach a documented consensus on the definition and use of these terms.</p
Comparative genomics highlights symbiotic capacities and high metabolic flexibility of the marine genus Pseudovibrio
Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesised that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival e.g. through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges
Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin
Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio
- …