322 research outputs found

    Preliminary observations on the mandibles of palaemonoid shrimp (Crustacea: Decapoda: Caridea: Palaemonoidea)

    Get PDF
    The mandibles of caridean shrimps have been widely studied in the taxonomy and functional biology of the group. Within the Palaemonoidea the mandibles reach a high level of structural diversity reflecting the diverse lifestyles within the superfamily. However, the majority of studies have been restricted to light microscopy, with the ultrastructure at finer levels poorly known. This study investigates the mandible of nine species belonging to six of the recognised families of the Palaemonoidea using SEM and analyses the results in a phylogenetic and dietary framework. The results of the study indicate that little phylogenetic information is conveyed by the structure of the mandible, but that its form is influenced by primary food sources of each species. With the exception of Anchistioides antiguensis, all species examined possessed cuticular structures at the distal end of the pars molaris (molar process). Five types of cuticular structures are recognised herein, each with a unique form, but variable in number, placement and arrangement. Each type is presumed to have a different function which is likewise related to diet

    The spin temperature of high-redshift damped Lyman-α\alpha systems

    Get PDF
    We report results from a programme aimed at investigating the temperature of neutral gas in high-redshift damped Lyman-α\alpha absorbers (DLAs). This involved (1) HI 21cm absorption studies of a large DLA sample, (2) VLBI studies to measure the low-frequency quasar core fractions, and (3) optical/ultraviolet spectroscopy to determine DLA metallicities and velocity widths. Including literature data, our sample consists of 37 DLAs with estimates of the spin temperature TsT_s and the covering factor. We find a strong 4σ4\sigma) difference between the TsT_s distributions in high-z (z>2.4) and low-z (z<2.4) DLA samples. The high-z sample contains more systems with high TsT_s values, ≳1000\gtrsim 1000 K. The TsT_s distributions in DLAs and the Galaxy are also clearly (~6σ6\sigma) different, with more high-TsT_s sightlines in DLAs than in the Milky Way. The high TsT_s values in the high-z DLAs of our sample arise due to low fractions of the cold neutral medium. For 29 DLAs with metallicity [Z/H] estimates, we confirm the presence of an anti-correlation between TsT_s and [Z/H], at 3.5σ3.5\sigma significance via a non-parametric Kendall-tau test. This result was obtained with the assumption that the DLA covering factor is equal to the core fraction. Monte Carlo simulations show that the significance of the result is only marginally decreased if the covering factor and the core fraction are uncorrelated, or if there is a random error in the inferred covering factor. We also find evidence for redshift evolution in DLA TsT_s values even for the z>1 sub-sample. Since z>1 DLAs have angular diameter distances comparable to or larger than those of the background quasars, they have similar efficiency in covering the quasars. Low covering factors in high-z DLAs thus cannot account for the observed redshift evolution in spin temperatures. (Abstract abridged.)Comment: 37 pages, 22 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Is Mislocalization during saccades related to the position of the saccade target within the image or to the gaze position at the end of the saccade?

    Get PDF
    A stimulus that is flashed around the time of a saccade tends to be mislocalized in the direction of the saccade target. Our question is whether the mislocalization is related to the position of the saccade target within the image or to the gaze position at the end of the saccade. We separated the two with a visual illusion that influences the perceived distance to the target of the saccade and thus saccade endpoint without affecting the perceived position of the saccade target within the image. We asked participants to make horizontal saccades from the left to the right end of the shaft of a Müller-Lyer figure. Around the time of the saccade, we flashed a bar at one of five possible positions and asked participants to indicate its location by touching the screen. As expected, participants made shorter saccades along the fins-in (<->) configuration than along the fins-out (>-<) configuration of the figure. The illusion also influenced the mislocalization pattern during saccades, with flashes presented with the fins-out configuration being perceived beyond flashes presented with the fins-in configuration. The difference between the patterns of mislocalization for bars flashed during the saccade for the two configurations corresponded quantitatively with a prediction based on compression towards the saccade endpoint considering the magnitude of the effect of the illusion on saccade amplitude. We conclude that mislocalization is related to the eye position at the end of the saccade, rather than to the position of the saccade target within the image

    Non-Invasive Estimation of Local Field Potentials for Neuroprosthesis Control

    Get PDF
    Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions; i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using different number of electrodes

    Carbon Nanotubes by a CVD Method. Part I: Synthesis and Characterization of the (Mg, Fe)O Catalysts

    Get PDF
    The controlled synthesis of carbon nanotubes by chemical vapor deposition requires tailored and wellcharacterized catalyst materials. We attempted to synthesize Mg1-xFexO oxide solid solutions by the combustion route, with the aim of performing a detailed investigation of the influence of the synthesis conditions (nitrate/urea ratio and the iron content) on the valency and distribution of the iron ions and phases. Notably, characterization of the catalyst materials is performed using 57Fe Mo¨ssbauer spectroscopy, X-ray diffraction, and electron microscopy. Several iron species are detected including Fe2+ ions substituting for Mg2+ in the MgO lattice, Fe3+ ions dispersed in the octahedral sites of MgO, different clusters of Fe3+ ions, and MgFe2O4-like nanoparticles. The dispersion of these species and the microstructure of the oxides are discussed. Powders markedly different from one another that may serve as model systems for further study are identified. The formation of carbon nanotubes upon reduction in a H2/CH4 gas atmosphere of the selected powders is reported in a companion paper

    Integrated management of atrial fibrillation in primary care:results of the ALL-IN cluster randomized trial

    Get PDF
    Aims To evaluate whether integrated care for atrial. fibrillation (AF) can be safely orchestrated in primary care. Methods and results The ALL-IN trial was a cluster randomized, open-label, pragmatic non-inferiority trial performed in primary care practices in the Netherlands. We randomized 26 practices: 15 to the integrated care intervention and 11 to usual care. The integrated care intervention consisted of (i) quarterly AF check-ups by trained nurses in primary care, also focusing on possibly interfering comorbidities, (ii) monitoring of anticoagulation therapy in primary care, and finally (iii) easy-access availability of consultations from cardiologists and anticoagulation clinics. The primary endpoint was all-cause mortality during 2 years of follow-up. In the intervention arm, 527 out of 941 eligible AF patients aged >65 years provided informed consent to undergo the intervention. These 527 patients were compared with 713 AF patients in the control arm receiving usual care. Median age was 77 (interquartile range 72-83) years. The all-cause mortality rate was 3.5 per 100 patient-years in the intervention arm vs. 6.7 per 100 patient-years in the control arm [adjusted hazard ratio (HR) 0.55; 95% confidence interval (CI) 0.37-0.82]. For non cardiovascular mortality, the adjusted HR was 0.47 (95% CI 0.27-0.82). For other adverse events, no statistically significant differences were observed. Conclusion In this cluster randomized trial, integrated care for elderly AF patients in primary care showed a 45% reduction in all-cause mortality when compared with usual care

    Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills

    Get PDF
    The M&ouml;ssbauer spectrometer on Spirit measured the oxidation state of Fe, identified Fe-bearing phases, and measured relative abundances of Fe among those phases for surface materials on the plains and in the Columbia Hills of Gusev crater. Eight Fe-bearing phases were identified: olivine, pyroxene, ilmenite, magnetite, nanophase ferric oxide (npOx), hematite, goethite, and a Fe3+-sulfate. Adirondack basaltic rocks on the plains are nearly unaltered (Fe3+/FeT &lt; 0.2) with Fe from olivine, pyroxene (Ol &gt; Px), and minor npOx and magnetite. Columbia Hills basaltic rocks are nearly unaltered (Peace and Backstay), moderately altered (WoolyPatch, Wishstone, and Keystone), and pervasively altered (e.g., Clovis, Uchben, Watchtower, Keel, and Paros with Fe3+/FeT&nbsp;~ 0.6&ndash;0.9). Fe from pyroxene is greater than Fe from olivine (Ol sometimes absent), and Fe2+ from Ol + Px is 40&ndash;49% and 9&ndash;24% for moderately and pervasively altered materials, respectively. Ilmenite (Fe from Ilm 3&ndash;6%) is present in Backstay, Wishstone, Keystone, and related rocks along with magnetite (Fe from Mt 10&ndash;15%). Remaining Fe is present as npOx, hematite, and goethite in variable proportions. Clovis has the highest goethite content (Fe from Gt = 40%). Goethite (&alpha;-FeOOH) is mineralogical evidence for aqueous processes because it has structural hydroxide and is formed under aqueous conditions. Relatively unaltered basaltic soils (Fe3+/FeT&nbsp;~ 0.3) occur throughout Gusev crater (60&ndash;80% Fe from Ol + Px, 10&ndash;30% from npOx, and 10% from Mt). PasoRobles soil in the Columbia Hills has a unique occurrence of high concentrations of Fe3+-sulfate (65% of Fe). Magnetite is identified as a strongly magnetic phase in Martian soil and dust.Additional co-authors: E Kankeleit, P Gütlich, F Renz, SW Squyres, RE Arvidso

    Atomic and electronic structure of twin growth defects in magnetite

    Get PDF
    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains

    Origin of reduced magnetization and domain formation in small magnetite nanoparticles

    Get PDF
    The structural, chemical, and magnetic properties of magnetite nanoparticles are compared. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. Atomistic magnetic modelling of nanoparticles with and without these defects reveals the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm
    • …
    corecore