16,912 research outputs found
A simulation model for wind energy storage systems. Volume 2: Operation manual
A comprehensive computer program (SIMWEST) developed for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel, and pneumatic) is described. Features of the program include: a precompiler which generates computer models (in FORTRAN) of complex wind source/storage/application systems, from user specifications using the respective library components; a program which provides the techno-economic system analysis with the respective I/O the integration of system dynamics, and the iteration for conveyance of variables; and capability to evaluate economic feasibility as well as general performance of wind energy systems. The SIMWEST operation manual is presented and the usage of the SIMWEST program and the design of the library components are described. A number of example simulations intended to familiarize the user with the program's operation is given along with a listing of each SIMWEST library subroutine
Cultivar diversity as a means of ecologically intensifying dry matter production in a perennial forage stand
The relationship between genotypic diversity and productivity has not been adequately explored in perennial forage production systems despite strong theoretical and empirical evidence supporting diversity\u27s role in ecosystem functioning in other managed and unmanaged systems. We conducted a two-year field experiment with six cultivars of an agriculturally important forage grass, Lolium perenne L. (perennial ryegrass). Dry matter production of L. perenne and the weed community that emerged from the soil seed bank were measured each year in treatments that ranged from cultivar monocultures to three- and six-way cultivar mixtures, all sown at a constant seeding rate. Mean L. perenne dry matter production increased with increasing cultivar diversity and was highest in mixtures that contained cultivars representing the greatest additive trait range (calculated on rankings of three traits: winter hardiness, heading date, and tolerance to grazing). Mixtures had greater yields than those predicted by the mean of their component monoculture yields, but there was evidence that highly productive cultivars may have dampened over-yielding in mixtures. Weed abundance was correlated with L. perenne dry matter, but not L. perenne cultivar diversity. These results suggest that multi-cultivar mixtures may have utility as an approach to ecologically intensifying perennial forage production. Additional research will be necessary to determine the mechanisms responsible for the over-yielding observed in this study and the generality of these findings
Increased Productivity of a Cover Crop Mixture Is Not Associated with Enhanced Agroecosystem Services
Cover crops provide a variety of important agroecological services within cropping systems. Typically these crops are grown as monocultures or simple graminoid-legume bicultures; however, ecological theory and empirical evidence suggest that agroecosystem services could be enhanced by growing cover crops in species-rich mixtures. We examined cover crop productivity, weed suppression, stability, and carryover effects to a subsequent cash crop in an experiment involving a five-species annual cover crop mixture and the component species grown as monocultures in SE New Hampshire, USA in 2011 and 2012. The mean land equivalent ratio (LER) for the mixture exceeded 1.0 in both years, indicating that the mixture over-yielded relative to the monocultures. Despite the apparent over-yielding in the mixture, we observed no enhancement in weed suppression, biomass stability, or productivity of a subsequent oat (Avena sativa L.) cash crop when compared to the best monoculture component crop. These data are some of the first to include application of the LER to an analysis of a cover crop mixture and contribute to the growing literature on the agroecological effects of cover crop diversity in cropping systems
Alternatives for Measuring Hazardous Waste Reduction
PTI Project number 233U-4913FRHWRIC Project Number 89006
Scanner observations of selected cool stars
Photoelectric spectral scans at 30-A resolution of 9 dwarfs, 10 giants and 6 supergiants with spectral types GO to M5 were presented. All stars were observed every 4 A from wavelength 3300 to wavelength 7000. Absorption features at this resolution coincide with: strong atomic lines of Fe 1,11, Ca 1,11, Mg 1, and Na 1; vibrational bands of the electronic transitions of TiO, MgH, CaH, SiH, AlH, Cn, Ch, C2, OH, and NH. The dependence of the wavelength 3740 Fe 1 blend and the wavelength 3440 depression on temperature is discussed
Seed Yield Prediction Models of Four Common Moist-Soil Plant Species in Texas
Seed production by moist-soil plant species often varies within and among managed wetlands and on larger landscapes. Quantifying seed production of moist-soil plants can be used to evaluate wetland management strategies and estimate wetland energetic carrying capacity, specifically for waterfowl. In the past, direct estimation techniques were used, but due to excessive personnel and time costs, other indirect methods have been developed. Because indirect seed yield models do not exist for moist-soil plant species in east-central or coastal Texas, we developed direct and indirect methods to model seed production on regional managed wetlands. In September 2004 and 2005, we collected Echinochloa crusgalli (barnyard grass), E. walterii (wild millet), E. colona (jungle rice), and Oryza sativa (cultivated rice) for phytomorphological measurements and seed yield modeling. Initial simple linear and point of origin regression analyses demonstrate strong relationships (P \u3c 0.001) among phytomorphological and dot grid methods in predicting seed production for all four species. These models should help regional wetland managers evaluate moist-soil management success and create models for seed production for other moist-soil plants in this region
The Role of fast magnetosonic waves in the release and conversion via reconnection of energy stored by a current sheet
Using a simple two-dimensional, zero-beta model, we explore the manner by
which reconnection at a current sheet releases and dissipates free magnetic
energy. We find that only a small fraction (3%-11% depending on current sheet
size) of the energy is stored close enough to the current sheet to be
dissipated abruptly by the reconnection process. The remaining energy, stored
in the larger-scale field, is converted to kinetic energy in a fast
magnetosonic disturbance propagating away from the reconnection site, carrying
the initial current and generating reconnection-associated flows (inflow and
outflow). Some of this reflects from the lower boundary (the photosphere) and
refracts back to the X-point reconnection site. Most of this inward wave energy
is reflected back again, and continues to bounce between X-point and
photosphere until it is gradually dissipated, over many transits. This phase of
the energy dissipation process is thus global and lasts far longer than the
initial purely local phase. In the process a significant fraction of the energy
(25%-60%) remains as undissipated fast magnetosonic waves propagating away from
the reconnection site, primarily upward. This flare-generated wave is initiated
by unbalanced Lorentz forces in the reconnection-disrupted current sheet,
rather than by dissipation-generated pressure, as some previous models have
assumed. Depending on the orientation of the initial current sheet the wave
front is either a rarefaction, with backward directed flow, or a compression,
with forward directed flow
The Box-Percentile Plot
A variant of the boxplot is proposed in which the sides contain the information of a percentile plot (which is equivalent to the empirical cumulative distribution function). Unlike boxplots, there is no question about how long to draw the whiskers, nor is there loss of information due to grouping. Side-by-side comparisons of distributions are especially effective. In spite of including more detail, the impact on statistically-untrained readers remains similar to that of traditional boxplots
DESIGNING GRADUATE EDUCATION FOR AGRIBUSINESS STUDENTS
For several years, universities in the U.S. have been struggling with defining and refining undergraduate and graduate agribusiness education programs. With the release of the recommendations of the National Agribusiness Education Commission, the search for the key ingredients of a Masters-level program has intensified. Mississippi State University has been among those universities attempting to define the parameters of a "cutting edge" agribusiness program. Faculty interest within the College of Business and Industry and the Agricultural Economics Department to develop a joint program has precipitated intensive efforts to achieve this goal. A nationally recognized agribusiness group of six academic leaders served as a Cooperative State Research Service team to assess the University's potential, using the concept of an agribusiness institute as an integrating and management vehicle. Efforts in this direction have been aided by a USDA planning grant now moving into its second year. A survey of Mid-South agribusiness leaders indicates the interest of the industry in development of the program. The final step is to address the logistical details required to convert the current Master of Agribusiness Management in the Department of Agricultural Economics to a jointly administered program of study.Teaching/Communication/Extension/Profession,
A Simplified Approach to Optimally Controlled Quantum Dynamics
A new formalism for the optimal control of quantum mechanical physical
observables is presented. This approach is based on an analogous classical
control technique reported previously[J. Botina, H. Rabitz and N. Rahman, J.
chem. Phys. Vol. 102, pag. 226 (1995)]. Quantum Lagrange multiplier functions
are used to preserve a chosen subset of the observable dynamics of interest. As
a result, a corresponding small set of Lagrange multipliers needs to be
calculated and they are only a function of time. This is a considerable
simplification over traditional quantum optimal control theory[S. shi and H.
Rabitz, comp. Phys. Comm. Vol. 63, pag. 71 (1991)]. The success of the new
approach is based on taking advantage of the multiplicity of solutions to
virtually any problem of quantum control to meet a physical objective. A family
of such simplified formulations is introduced and numerically tested. Results
are presented for these algorithms and compared with previous reported work on
a model problem for selective unimolecular reaction induced by an external
optical electric field.Comment: Revtex, 29 pages (incl. figures
- …