155 research outputs found

    Housing Conditions Differentially Affect Physiological and Behavioural Stress Responses of Zebrafish, as well as the Response to Anxiolytics

    Get PDF
    Zebrafish are a widely utilised animal model in developmental genetics, and owing to recent advances in our understanding of zebrafish behaviour, their utility as a comparative model in behavioural neuroscience is beginning to be realised. One widely reported behavioural measure is the novel tank-diving assay, which has been often cited as a test of anxiety and stress reactivity. Despite its wide utilisation, and various validations against anxiolytic drugs, reporting of pre-test housing has been sparse in the literature. As zebrafish are a shoaling species, we predicted that housing environment would affect their stress reactivity and, as such, their response in the tank-diving procedure. In our first experiment, we tested various aspects of housing (large groups, large groups with no contact, paired, visual contact only, olfactory contact only) and found that the tank diving response was mediated by visual contact with conspecifics. We also tested the basal cortisol levels of group and individually housed fish, and found that individually housed individuals have lower basal cortisol levels. In our second experiment we found ethanol appeared to have an anxiolytic effect with individually housed fish but not those that were group housed. In our final experiment, we examined the effects of changing the fishes' water prior to tank diving as an additional acclimation procedure. We found that this had no effect on individually housed fish, but appeared to affect the typical tank diving responses of the group housed individuals. In conclusion, we demonstrate that housing represents an important factor in obtaining reliable data from this methodology, and should be considered by researchers interested in comparative models of anxiety in zebrafish in order to refine their approach and to increase the power in their experiments

    Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells

    Get PDF
    Somatic mutation of ten-eleven translocation 2 (TET2) gene is frequently found in human myeloid malignancies. Recent reports showed that loss of Tet2 led to pleiotropic hematopoietic abnormalities including increased competitive repopulating capacity of bone marrow (BM) HSCs and myeloid transformation. However, precise impact of Tet2 loss on the function of fetal liver (FL) HSCs has not been examined. Here we show that disruption of Tet2 results in the expansion of Lin−Sca-1+c-Kit+ (LSK) cells in FL. Furthermore, Tet2 loss led to enhanced self-renewal and long-term repopulating capacity of FL-HSCs in in vivo serial transplantation assay. Disruption of Tet2 in FL also led to altered differentiation of mature blood cells, expansion of common myeloid progenitors and increased resistance for hematopoietic progenitor cells (HPCs) to differentiation stimuli in vitro. These results demonstrate that Tet2 plays a critical role in homeostasis of HSCs and HPCs not only in the BM, but also in FL

    Transcription Factor SP4 Is a Susceptibility Gene for Bipolar Disorder

    Get PDF
    The Sp4 transcription factor plays a critical role for both development and function of mouse hippocampus. Reduced expression of the mouse Sp4 gene results in a variety of behavioral abnormalities relevant to human psychiatric disorders. The human SP4 gene is therefore examined for its association with both bipolar disorder and schizophrenia in European Caucasian and Chinese populations respectively. Out of ten SNPs selected from human SP4 genomic locus, four displayed significant association with bipolar disorder in European Caucasian families (rs12668354, p = 0.022; rs12673091, p = 0.0005; rs3735440, p = 0.019; rs11974306, p = 0.018). To replicate the genetic association, the same set of SNPs was examined in a Chinese bipolar case control sample. Four SNPs displayed significant association (rs40245, p = 0.009; rs12673091, p = 0.002; rs1018954, p = 0.001; rs3735440, p = 0.029), and two of them (rs12673091, rs3735440) were shared with positive SNPs from European Caucasian families. Considering the genetic overlap between bipolar disorder and schizophrenia, we extended our studies in Chinese trios families for schizophrenia. The SNP7 (rs12673091, p = 0.012) also displayed a significant association. The SNP7 (rs12673091) was therefore significantly associated in all three samples, and shared the same susceptibility allele (A) across all three samples. On the other hand, we found a gene dosage effect for mouse Sp4 gene in the modulation of sensorimotor gating, a putative endophenotype for both schizophrenia and bipolar disorder. The deficient sensorimotor gating in Sp4 hypomorphic mice was partially reversed by the administration of dopamine D2 antagonist or mood stabilizers. Both human genetic and mouse pharmacogenetic studies support Sp4 gene as a susceptibility gene for bipolar disorder or schizophrenia. The studies on the role of Sp4 gene in hippocampal development may provide novel insights for the contribution of hippocampal abnormalities in these psychiatric disorders

    The hypomethylating agent Decitabine causes a paradoxical increase in 5-hydroxymethylcytosine in human leukemia cells

    Get PDF
    The USFDA approved "epigenetic drug", Decitabine, exerts its effect by hypomethylating DNA, demonstrating the pivotal role aberrant genome-wide DNA methylation patterns play in cancer ontology. Using sensitive technologies in a cellular model of Acute Myeloid Leukemia, we demonstrate that while Decitabine reduces the global levels of 5-methylcytosine (5mC), it results in paradoxical increase of 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) levels. Hitherto, the only biological mechanism known to generate 5hmC, 5fC and 5caC, involving oxidation of 5mC by members of Ten-Eleven-Translocation (TET) dioxygenase family, was not observed to undergo any alteration during DAC treatment. Using a multi-compartmental model of DNA methylation, we show that partial selectivity of TET enzymes for hemi-methylated CpG dinucleotides could lead to such alterations in 5hmC content. Furthermore, we investigated the binding of TET1-catalytic domain (CD)-GFP to DNA by Fluorescent Correlation Spectroscopy in live cells and detected the gradual increase of the DNA bound fraction of TET1-CD-GFP after treatment with Decitabine. Our study provides novel insights on the therapeutic activity of DAC in the backdrop of the newly discovered derivatives of 5mC and suggests that 5hmC has the potential to serve as a biomarker for monitoring the clinical success of patients receiving DAC

    SYSGENET: a meeting report from a new European network for systems genetics

    Get PDF
    The first scientific meeting of the newly established European SYSGENET network took place at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, April 7-9, 2010. About 50 researchers working in the field of systems genetics using mouse genetic reference populations (GRP) participated in the meeting and exchanged their results, phenotyping approaches, and data analysis tools for studying systems genetics. In addition, the future of GRP resources and phenotyping in Europe was discussed

    A study of alterations in DNA epigenetic modifications (5mC and 5hmC) and gene expression influenced by simulated microgravity in human lymphoblastoid cells

    Get PDF
    Cells alter their gene expression in response to exposure to various environmental changes. Epigenetic mechanisms such as DNA methylation are believed to regulate the alterations in gene expression patterns. In vitro and in vivo studies have documented changes in cellular proliferation, cytoskeletal remodeling, signal transduction, bone mineralization and immune deficiency under the influence of microgravity conditions experienced in space. However microgravity induced changes in the epigenome have not been well characterized. In this study we have used Next-generation Sequencing (NGS) to profile ground-based “simulated” microgravity induced changes on DNA methylation (5-methylcytosine or 5mC), hydroxymethylation (5-hydroxymethylcytosine or 5hmC), and simultaneous gene expression in cultured human lymphoblastoid cells. Our results indicate that simulated microgravity induced alterations in the methylome (~60% of the differentially methylated regions or DMRs are hypomethylated and ~92% of the differentially hydroxymethylated regions or DHMRs are hyperhydroxymethylated). Simulated microgravity also induced differential expression in 370 transcripts that were associated with crucial biological processes such as oxidative stress response, carbohydrate metabolism and regulation of transcription. While we were not able to obtain any global trend correlating the changes of methylation/ hydroxylation with gene expression, we have been able to profile the simulated microgravity induced changes of 5mC over some of the differentially expressed genes that includes five genes undergoing differential methylation over their promoters and twenty five genes undergoing differential methylation over their gene-bodies. To the best of our knowledge, this is the first NGS-based study to profile epigenomic patterns induced by short time exposure of simulated microgravity and we believe that our findings can be a valuable resource for future explorations

    Genetic Dissection of Strain Dependent Paraquat-induced Neurodegeneration in the Substantia Nigra Pars Compacta

    Get PDF
    The etiology of the vast majority of Parkinson's disease (PD) cases is unknown. It is generally accepted that there is an interaction between exposures to environmental agents with underlying genetic sensitivity. Recent epidemiological studies have shown that people living in agricultural communities have an increased risk of PD. Within these communities, paraquat (PQ) is one of the most utilized herbicides. PQ acts as a direct redox cycling agent to induce formation of free radicals and when administered to mice induces the cardinal symptoms of parkinsonism, including loss of TH+-positive dopaminergic (DA) neurons in the ventral midbrain's substantia nigra pars compacta (SNpc). Here we show that PQ-induced SNpc neuron loss is highly dependent on genetic background: C57BL/6J mice rapidly lose ∼50% of their SNpc DA neurons, whereas inbred Swiss-Webster (SWR/J) mice do not show any significant loss. We intercrossed these two strains to map quantitative trait loci (QTLs) that underlie PQ-induced SNpc neuron loss. Using genome-wide linkage analysis we detected two significant QTLs. The first is located on chromosome 5 (Chr 5) centered near D5Mit338, whereas the second is on Chr 14 centered near D14Mit206. These two QTLs map to different loci than a previously identified QTL (Mptp1) that controls a significant portion of strain sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), suggesting that the mechanism of action of these two parkinsonian neurotoxins are different

    Hippocampal Gene Expression Analysis Highlights Ly6a/Sca-1 as Candidate Gene for Previously Mapped Novelty Induced Behaviors in Mice

    Get PDF
    In this study, we show that the covariance between behavior and gene expression in the brain can help further unravel the determinants of neurobehavioral traits. Previously, a QTL for novelty induced motor activity levels was identified on murine chromosome 15 using consomic strains. With the goal of narrowing down the linked region and possibly identifying the gene underlying the quantitative trait, gene expression data from this F2-population was collected and used for expression QTL analysis. While genetic variation in these mice was limited to chromosome 15, eQTL analysis of gene expression showed strong cis-effects as well as trans-effects elsewhere in the genome. Using weighted gene co-expression network analysis, we were able to identify modules of co-expressed genes related to novelty induced motor activity levels. In eQTL analyses, the expression of Ly6a (a.k.a. Sca-1) was found to be cis-regulated by chromosome 15. Ly6a also surfaced in a group of genes resulting from the network analysis that was correlated with behavior. Behavioral analysis of Ly6a knock-out mice revealed reduced novelty induced motor activity levels when compared to wild type controls, confirming functional importance of Ly6a in this behavior, possibly through regulating other genes in a pathway. This study shows that gene expression profiling can be used to narrow down a previously identified behavioral QTL in mice, providing support for Ly6a as a candidate gene for functional involvement in novelty responsiveness

    Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies

    Get PDF
    Outbred laboratory mouse populations are widely used in biomedical research. Since little is known about the degree of genetic variation present in these populations, they are not widely used for genetic studies. Commercially available outbred CD-1 mice are drawn from an extremely large breeding population that has accumulated many recombination events, which is desirable for genome-wide association studies. We therefore examined the degree of genome-wide variation within CD-1 mice to investigate their suitability for genetic studies. The CD-1 mouse genome displays patterns of linkage disequilibrium and heterogeneity similar to wild-caught mice. Population substructure and phenotypic differences were observed among CD-1 mice obtained from different breeding facilities. Differences in genetic variation among CD-1 mice from distinct facilities were similar to genetic differences detected between closely related human populations, consistent with a founder effect. This first large-scale genetic analysis of the outbred CD-1 mouse strain provides important considerations for the design and analysis of genetic studies in CD-1 mice
    corecore