3,799 research outputs found

    High performance turboalternator and associated hardware. 3. Design of backup gas bearings

    Get PDF
    Turboalternator gas bearing system for spacecraft electric power productio

    Theoretical models for classical Cepheids. VIII. Effects of helium and heavy elements abundance on the Cepheid distance scale

    Full text link
    Previous nonlinear fundamental pulsation models for classical Cepheids with metal content Z <= 0.02 are implemented with new computations at super-solar metallicity (Z=0.03, 0.04) and selected choices of the helium-to-metal enrichment ratio DeltaY/Delta Z. On this basis, we show that the location into the HR diagram of the Cepheid instability strip is dependent on both metal and helium abundance, moving towards higher effective temperatures with decreasing the metal content (at fixed Y) or with increasing the helium content (at fixed Z). The contributions of helium and metals to the predicted Period-Luminosity and Period-Luminosity-Color relations are discussed, as well as the implications on the Cepheid distance scale. Based on these new results, we finally show that the empirical metallicity correction suggested by Cepheid observations in two fields of the galaxy M101 may be accounted for, provided that the adopted helium-to-metal enrichment ratio is reasonably high (Delta Y/Delta Z ~ 3.5).Comment: 23 pages, including 6 postscript figures, accepted for publication on Ap

    The Distance of the First Overtone RR Lyrae Variables in the MACHO LMC Database: A New Method to Correct for the Effects of Crowding

    Full text link
    Previous studies have indicated that many of the RR Lyrae variables in the LMC have properties similar to the ones in the Galactic globular cluster M3. Assuming that the M3 RR Lyrae variables follow the same relationships among period, temperature, amplitude and Fourier phase parameter phi31 as their LMC counterparts, we have used the M3 phi31-logP relation to identify the M3-like unevolved first overtone RR Lyrae variables in 16 fields near the LMC bar. The temperatures of these variables were calculated from the M3 logP-logTe relation so that the extinction could be derived for each star separately. Since blended stars have lower amplitudes for a given period, the period amplitude relation should be a useful tool for identifying which stars are affected by crowding. We find that the low amplitude stars are brighter. We remove them from the sample and derive an LMC distance modulus 18.49+/-0.11.Comment: 30 pages, 7 figures, accepted for publication in the Astronomical Journa

    Analysis of Spatial Structure of the SPica H II Region

    Full text link
    Far ultraviolet (FUV) spectral images of the Spica H II region are first presented here for the Si II* 1533.4A and Al II 1670.8A lines and then compared with the optical Halpha image. The H alpha and Si II* images show enhanced emissions in the southern part of the H II region where H I density increases outwards. This high density region, which we identify as part of the "interaction ring" of the Loop I superbubble and the Local Bubble, seems to bound the southern H II region. On the other hand, the observed profile of Al II shows a broad central peak, without much difference between the northern and southern parts, which we suspect results from multiple resonant scattering. The extended tails seen in the radial profiles of the FUV intensities suggest that the nebula may be embedded in a warm ionized gas. Simulation with a spectral synthesis code yields the values of the Lyman continuum luminosity and the effective temperature of the central star similar to previous estimates with 10^46.2 photons s^-1 and 26,000 K, respectively, but the density of the northern H II region, 0.22 cm^-3, is much smaller than previous estimates for the H alpha brightest region.Comment: 15 pages, 5 figures, accepted for Ap

    Analysis of thermomechanical fatigue of unidirectional titanium metal matrix composites

    Get PDF
    Thermomechanical fatigue (TMF) data was generated for a Ti-15V-3Cr-3Al-3Sn (Ti-15-3) material reinforced with SCS-6 silicon carbide fibers for both in-phase and out-of-phase thermomechanical cycling. Significant differences in failure mechanisms and fatigue life were noted for in-phase and out-of-phase testing. The purpose of the research is to apply a micromechanical model to the analysis of the data. The analysis predicts the stresses in the fiber and the matrix during the thermal and mechanical cycling by calculating both the thermal and mechanical stresses and their rate-dependent behavior. The rate-dependent behavior of the matrix was characterized and was used to calculate the constituent stresses in the composite. The predicted 0 degree fiber stress range was used to explain the composite failure. It was found that for a given condition, temperature, loading frequency, and time at temperature, the 0 degree fiber stress range may control the fatigue life of the unidirectional composite

    Disturbances in the spontaneous attribution of social meaning in schizophrenia

    Get PDF
    Background. Schizophrenia patients show disturbances on a range of tasks that assess mentalizing or 'Theory of Mind' (ToM). However, these tasks are often developmentally inappropriate, make large demands on verbal abilities and explicit problem-solving skills, and involve after-the-fact reflection as opposed to spontaneous mentalizing. Method. To address these limitations, 55 clinically stable schizophrenia out-patients and 44 healthy controls completed a validated Animations Task designed to assess spontaneous attributions of social meaning to ambiguous abstract visual stimuli. In this paradigm, 12 animations depict two geometric shapes' interacting' with each other in three conditions: (1) ToM interactions that elicit attributions of mental states to the agents, (2) Goal-Directed (GO) interactions that elicit attributions of simple actions, and (3) Random scenes in which no interaction occurs. Verbal descriptions of each animation are rated for the degree of Intentionality attributed to the agents and for accuracy. Results. Patients had lower Intentionality ratings than controls for ToM and GO scenes but the groups did not significantly differ for Random scenes. The descriptions of the patients less closely matched the situations intended by the developers of the task. Within the schizophrenia group, performance on the Animations Task showed minimal associations with clinical symptoms. Conclusions. Patients demonstrated disturbances in the spontaneous attribution of mental states to abstract visual stimuli that normally evoke such attributions. Hence, in addition to previously established impairment on mentalizing tasks that require logical inferences about others' mental states, individuals with schizophrenia show disturbances in implicit aspects of mentalizing

    Apparent superluminal advancement of a single photon far beyond its coherence length

    Full text link
    We present experimental results relative to superluminal propagation based on a single photon traversing an optical system, called 4f-system, which acts singularly on the photon's spectral component phases. A single photon is created by a CW laser light down{conversion process. The introduction of a linear spectral phase function will lead to the shift of the photon peak far beyond the coherence length of the photon itself (an apparent superluminal propagation of the photon). Superluminal group velocity detection is done by interferometric measurement of the temporal shifted photon with its correlated untouched reference. The observed superluminal photon propagation complies with causality. The operation of the optical system allows to enlighten the origin of the apparent superluminal photon velocity. The experiment foresees a superluminal effect with single photon wavepackets.Comment: 11 pages, 2 figure

    Taming the Invisible Monster: System Parameter Constraints for Epsilon Aurigae from the Far-Ultraviolet to the Mid-Infrared

    Get PDF
    We have assembled new Spitzer Space Telescope Infrared Array Camera observations of the mysterious binary star Epsilon Aurigae, along with archival far-ultraviolet to mid-infrared data, to form an unprecedented spectral energy distribution spanning three orders of magnitude in wavelength from 0.1 microns to 100 microns. The observed spectral energy distribution can be reproduced using a three component model consisting of a 2.2+0.9/-0.8 Msun F type post-asymptotic giant branch star, and a 5.9+/-0.8 Msun B5+/-1 type main sequence star that is surrounded by a geometrically thick, but partially transparent, disk of gas and dust. At the nominal HIPPARCOS parallax distance of 625 pc, the model normalization yields a radius of 135+/-5 Rsun for the F star, consistent with published interferometric observations. The dusty disk is constrained to be viewed at an inclination of i > 87 deg, and has effective temperature of 550+/-50 K with an outer radius of 3.8 AU and a thickness of 0.95 AU. The dust content of the disk must be largely confined to grains larger than ~10 microns in order to produce the observed gray optical-infrared eclipses and the lack of broad dust emission features in the archival Spitzer mid-infrared spectra. The total mass of the disk, even considering a potential gaseous contribution in addition to the dust that produces the observed infrared excess, is << 1 Msun. We discuss evolutionary scenarios for this system that could lead to the current status of the stellar components and suggests possibilities for its future evolution, as well as potential observational tests of our model.Comment: 13 pages, 3 figures. Accepted for publication in The Astrophysical Journal

    Kepler Input Catalog: Photometric Calibration and Stellar Classification

    Full text link
    We describe the photometric calibration and stellar classification methods used to produce the Kepler Input Catalog (KIC). The KIC is a catalog containing photometric and physical data for sources in the Kepler Mission field of view; it is used by the mission to select optimal targets. We derived atmospheric extinction corrections from hourly observations of secondary standard fields within the Kepler field of view. Repeatability of absolute photometry for stars brighter than magnitude 15 is typically 2%. We estimated stellar parameters Teff, log(g), log (Z), E_{B-V} using Bayesian posterior probability maximization to match observed colors to Castelli stellar atmosphere models. We applied Bayesian priors describing the distribution of solar-neighborhood stars in the color-magnitude diagram (CMD), in log (Z)$, and in height above the galactic plane. Comparisons with samples of stars classified by other means indicate that in most regions of the CMD, our classifications are reliable within about +/- 200 K and +/- 0.4 dex in log (g). It is difficult to assess the reliability of our log(Z) estimates, but there is reason to suspect that it is poor, particularly at extreme Teff. Of great importance for the Kepler Mission, for Teff <= 5400 K, the distinction between main-sequence stars and giants has proved to be reliable with better than 98% confidence. The KIC is available through the MAST data archive.Comment: 77 pages, 12 figures, 1 Table. Accepted by Astronomical Journal 24 July 201
    corecore