Previous nonlinear fundamental pulsation models for classical Cepheids with
metal content Z <= 0.02 are implemented with new computations at super-solar
metallicity (Z=0.03, 0.04) and selected choices of the helium-to-metal
enrichment ratio DeltaY/Delta Z. On this basis, we show that the location into
the HR diagram of the Cepheid instability strip is dependent on both metal and
helium abundance, moving towards higher effective temperatures with decreasing
the metal content (at fixed Y) or with increasing the helium content (at fixed
Z). The contributions of helium and metals to the predicted Period-Luminosity
and Period-Luminosity-Color relations are discussed, as well as the
implications on the Cepheid distance scale. Based on these new results, we
finally show that the empirical metallicity correction suggested by Cepheid
observations in two fields of the galaxy M101 may be accounted for, provided
that the adopted helium-to-metal enrichment ratio is reasonably high (Delta
Y/Delta Z ~ 3.5).Comment: 23 pages, including 6 postscript figures, accepted for publication on
Ap