373 research outputs found

    GUTs in Type IIB Orientifold Compactifications

    Get PDF
    We systematically analyse globally consistent SU(5) GUT models on intersecting D7-branes in genuine Calabi-Yau orientifolds with O3- and O7-planes. Beyond the well-known tadpole and K-theory cancellation conditions there exist a number of additional subtle but quite restrictive constraints. For the realisation of SU(5) GUTs with gauge symmetry breaking via U(1)_Y flux we present two classes of suitable Calabi-Yau manifolds defined via del Pezzo transitions of the elliptically fibred hypersurface P_{1,1,1,6,9}[18] and of the Quintic P_{1,1,1,1,1}[5], respectively. To define an orientifold projection we classify all involutions on del Pezzo surfaces. We work out the model building prospects of these geometries and present five globally consistent string GUT models in detail, including a 3-generation SU(5) model with no exotics whatsoever. We also realise other phenomenological features such as the 10 10 5 Yukawa coupling and comment on the possibility of moduli stabilisation, where we find an entire new set of so-called swiss-cheese type Calabi-Yau manifolds. It is expected that both the general constrained structure and the concrete models lift to F-theory vacua on compact Calabi-Yau fourfolds.Comment: 138 pages, 9 figures; v2, v3: typos corrected, one reference adde

    Coset Realization of Unifying W-Algebras

    Full text link
    We construct several quantum coset W-algebras, e.g. sl(2,R)/U(1) and sl(2,R)+sl(2,R) / sl(2,R), and argue that they are finitely nonfreely generated. Furthermore, we discuss in detail their role as unifying W-algebras of Casimir W-algebras. We show that it is possible to give coset realizations of various types of unifying W-algebras, e.g. the diagonal cosets based on the symplectic Lie algebras sp(2n) realize the unifying W-algebras which have previously been introduced as `WD_{-n}'. In addition, minimal models of WD_{-n} are studied. The coset realizations provide a generalization of level-rank-duality of dual coset pairs. As further examples of finitely nonfreely generated quantum W-algebras we discuss orbifolding of W-algebras which on the quantum level has different properties than in the classical case. We demonstrate in some examples that the classical limit according to Bowcock and Watts of these nonfreely finitely generated quantum W-algebras probably yields infinitely nonfreely generated classical W-algebras.Comment: 60 pages (plain TeX) (final version to appear in Int. J. Mod. Phys. A; several minor improvements and corrections - for details see beginning of file

    Unitary minimal models of SW(3/2,3/2,2) superconformal algebra and manifolds of G_2 holonomy

    Get PDF
    The SW(3/2,3/2,2) superconformal algebra is a W algebra with two free parameters. It consists of 3 superconformal currents of spins 3/2, 3/2 and 2. The algebra is proved to be the symmetry algebra of the coset (su(2)+su(2)+su(2))/su(2). At the central charge c=21/2 the algebra coincides with the superconformal algebra associated to manifolds of G_2 holonomy. The unitary minimal models of the SW(3/2,3/2,2) algebra and their fusion structure are found. The spectrum of unitary representations of the G_2 holonomy algebra is obtained.Comment: 34 pages, 2 figures, latex; v2: added examples in appendix D; v3: published version, corrected typo

    New N=1 Extended Superconformal Algebras with Two and Three Generators

    Full text link
    In this paper we consider extensions of the super Virasoro algebra by one and two super primary fields. Using a non-explicitly covariant approach we compute all SW-algebras with one generator of dimension up to 7 in addition to the super Virasoro field. In complete analogy to W-algebras with two generators most results can be classified using the representation theory of the super Virasoro algebra. Furthermore, we find that the SW(3/2, 11/2)-algebra can be realized as a subalgebra of SW(3/2, 5/2) at c = 10/7. We also construct some new SW-algebras with three generators, namely SW(3/2, 3/2, 5/2), SW(3/2, 2, 2) and SW(3/2, 2, 5/2).Comment: 30 pages (Plain TeX), BONN-HE-92-0

    Yukawa couplings and masses of non-chiral states for the Standard Model on D6-branes on T6/Z6'

    Full text link
    The perturbative leading order open string three-point couplings for the Standard Model with hidden USp(6) on fractional D6-branes on T6/Z6' from arXiv:0806.3039 [hep-th], arXiv:0910.0843 [hep-th] are computed. Physical Yukawa couplings consisting of holomorphic Wilsonian superpotential terms times a non-holomorphic prefactor involving the corresponding classical open string Kaehler metrics are given, and mass terms for all non-chiral matter states are derived. The lepton Yukawa interactions are at leading order flavour diagonal, while the quark sector displays a more intricate pattern of mixings. While N=2 supersymmetric sectors acquire masses via only two D6-brane displacements - which also provide the hierarchies between up- and down-type Yukawas within one quark or lepton generation -, the remaining vector-like states receive masses via perturbative three-point couplings to some Standard Model singlet fields with vevs along flat directions. Couplings to the hidden sector and messengers for supersymmetry breaking are briefly discussed.Comment: 52 pages (including 8p. appendix); 5 figures; 14 tables; v2: discussion in section 4.1.3 extended, footnote 5 added, typos corrected, accepted by JHE

    Merging Heterotic Orbifolds and K3 Compactifications with Line Bundles

    Get PDF
    We clarify the relation between six-dimensional Abelian orbifold compactifications of the heterotic string and smooth heterotic K3 compactifications with line bundles for both SO(32) and E_8 x E_8 gauge groups. The T^4/Z_N cases for N=2,3,4 are treated exhaustively, and for N=6 some examples are given. While all T^4/Z_2 and nearly all T^4/Z_3 models have a simple smooth match involving one line bundle only, this is only true for some T^4/Z_4 and T^4/Z_6 cases. We comment on possible matchings with more than one line bundle for the remaining cases. The matching is provided by comparisons of the massless spectra and their anomalies as well as a field theoretic analysis of the blow-ups.Comment: 49 pages, 1 figure; v2: references adde

    Towards a Realistic Type IIA T^6/Z_4 Orientifold Model with Background Fluxes, Part 1: Moduli Stabilization

    Full text link
    We apply the methods of DeWolfe et al. [hep-th/0505160] to a T^6/Z_4 orientifold model. This is the first step in an attempt to build a phenomenologically interesting meta-stable de Sitter model with small cosmological constant and standard model gauge groups.Comment: 1+30 pages, 2 figures, LaTeX, v2: minor corrections, stability analysis of b_a moduli added, refs added, version accepted for publication in JHE

    Exploring the SO(32) Heterotic String

    Full text link
    We give a complete classification of Z_N orbifold compactification of the heterotic SO(32) string theory and show its potential for realistic model building. The appearance of spinor representations of SO(2n) groups is analyzed in detail. We conclude that the heterotic SO(32) string constitutes an interesting part of the string landscape both in view of model constructions and the question of heterotic-type I duality.Comment: 21 pages, 5 figure

    Statistics in the Landscape of Intersecting Brane Models

    Get PDF
    An approach towards a statistical survey of four dimensional supersymmetric vacua in the string theory landscape is described and illustrated with three examples of ensembles of intersecting D-brane models. The question whether it is conceivable to make predictions based on statistical distributions is discussed. Especially interesting in this context are possible correlations between low energy observables. As an example we look at correlations between properties of the gauge sector of intersecting D-brane models and Gepner model constructions.Comment: Submitted for the SUSY07 proceedings, 4 pages, 2 figure

    Natural Quintessence in String Theory

    Full text link
    We introduce a natural model of quintessence in string theory where the light rolling scalar is radiatively stable and couples to Standard Model matter with weaker-than- Planckian strength. The model is embedded in an anisotropic type IIB compactification with two exponentially large extra dimensions and TeV-scale gravity. The bulk turns out to be nearly supersymmetric since the scale of the gravitino mass is of the order of the observed value of the cosmological constant. The quintessence field is a modulus parameterising the size of an internal four-cycle which naturally develops a potential of the order (gravitino mass)^4, leading to a small dark energy scale without tunings. The mass of the quintessence field is also radiatively stable since it is protected by supersymmetry in the bulk. Moreover, this light scalar couples to ordinary matter via its mixing with the volume mode. Due to the fact that the quintessence field is a flat direction at leading order, this mixing is very small, resulting in a suppressed coupling to Standard Model particles which avoids stringent fifth-force constraints. On the other hand, if dark matter is realised in terms of Kaluza-Klein states, unsuppressed couplings between dark energy and dark matter can emerge, leading to a scenario of coupled quintessence within string theory. We study the dynamics of quintessence in our set-up, showing that its main features make it compatible with observations.Comment: 26 page
    • 

    corecore