5,864 research outputs found

    Geology of the Marble Deposits Near Rutland

    Get PDF
    Guidebook for the fifty-first annual meeting of the New England Intercollegiate Geological Conference: Stratigraphy and structure of west central Vermont and adjacent New York: Trip

    An Investigation of Acid Rock Drainage in Glacial Streams Through Multivariate Exploratory Analysis and the Biotic Ligand Model in the Cordillera Blanca, Peru.

    Get PDF
    Water chemistry in the Cordillera Blanca, Peru, where glaciers provide crucial freshwater to the arid Andes Mountains, was characterized during the dry season (June-August), 2014. Metal concentrations, anion concentrations, and physical and chemical parameters were assessed at 94 sample sites in seven river valleys. Nonparametric multivariate exploratory statistics were used to compare sample sites. Compared to other river valleys, high metal concentrations were evident in the Quilcayhuanca valley. Water chemistry and visual signs indicated that acid rock drainage (ARD) is occurring in the Cordillera Blanca, likely due to glacial recession. Hierarchical clustering analysis was performed on the results of a principal components analysis on the chemical data. The results of these two analyses showed cobalt, manganese, and nickel were the top metals that distinguished the different clusters. In addition to the exploratory analysis, the Biotic Ligand Model (BLM) was used to predict toxicity to aquatic life based on the chemical measurements at the sampling sites. Approximately 20% of the sites had predicted toxic responses to metals and another 20% of the sites were outside of the pH tolerance range of individual species. These sites outside of the pH ranges were assumed to cause toxicity to the aquatic organisms due to hydrogen ions rather than metals. From this, the altered water quality in headwater streams in the Cordillera Blanca is predicted to be detrimental to aquatic life. The reduction in water quality makes the understanding of these headwater streams critical in efforts to mitigate the loss of crucial water resources

    The impact of building a leadership team of laypersons upon the Rockwood United Methodist Charge\u27s embracing and fulfilling of its charge-wide vision statement

    Get PDF
    https://place.asburyseminary.edu/ecommonsatsdissertations/1252/thumbnail.jp

    Another Missed Opportunity to Fix Discrimination in Discrimination Law

    Get PDF

    Maxillary expansion in an animal model with light, continuous force

    Get PDF
    Objectives: Maxillary constriction is routinely addressed with rapid maxillary expansion (RME). However, the heavy forces delivered by most RME appliances to expand the palate may lead to deleterious effects on the teeth and supporting tissues. The objective of this study was to explore a more physiologic maxillary expansion with light continuous force. Materials and Methods: Twenty 6-week-old Sprague-Dawley rats were equally divided into experimental (EXPT) and control (CTRL) groups. A custom-fabricated archwire expansion appliance made from 0.014-inch copper-nickel-titanium wire was activated 5 mm and bonded to the maxillary molar segments of animals in the EXPT group for 21 days. The force applied to each maxillary segment was 5 cN. Microfocus x-ray computed tomography and histological analyses were used to compare the tooth movement and bone morphology in the midpalatal suture and buccal aspect of the alveolar process between the EXPT and CTRL groups. Descriptive statistics (mean ± standard error of the mean) and nonparametric statistical tests were used to compare the outcomes across groups. Results: Compared to the CTRL group, there was a statistically significant increase in buccal tooth movement and expansion of the midpalatal suture in the EXPT group. There was no difference in the bone morphologic parameters between groups. The mineral apposition rate was increased on the buccal surface of the alveolar process in the EXPT group. Conclusions: Application of light, continuous force resulted in maxillary osseous expansion due to bilateral sutural apposition and buccal drift of the alveolar processes. This animal experiment provides a more physiologic basis for maxillary expansion

    On the predictions and limitations of the BeckerDoring model for reaction kinetics in micellar surfactant solutions

    Get PDF
    We investigate the breakdown of a system of micellar aggregates in a surfactant solution following an order-one dilution. We derive a mathematical model based on the Becker–Döring system of equations, using realistic expressions for the reaction constants fit to Molecular Dynamics simulations. We exploit the largeness of typical aggregation numbers to derive a continuum model, substituting a large system of ordinary differential equations for a partial differential equation in two independent variables: time and aggregate size. Numerical solutions demonstrate that re-equilibration occurs in two distinct stages over well-separated time-scales, in agreement with experiment and with previous theories. We conclude by exposing a limitation in the Becker–Döring theory for re-equilibration and discuss potential resolutions

    An asymptotic theory for the re-equilibration of a micellar surfactant solution

    Get PDF
    Micellar surfactant solutions are characterized by a distribution of aggregates comprised predominantly of pre-micellar aggregates (monomers, dimers, trimers, etc.) and a region of proper micelles close to the peak aggregation number, connected by an intermediate region containing a very low concentration of aggregates. Such a distribution gives rise to a distinct two-timescale re-equilibration following a system dilution, known as the 1 and 2 processes, whose dynamics may be described by the Becker–Döring equations. We use a continuum version of these equations to develop a reduced asymptotic description that elucidates the behavior during each of these processes

    Aeromechanics and Aeroacoustics Predictions of the Boeing-SMART Rotor Using Coupled-CFD/CSD Analyses

    Get PDF
    This paper will highlight helicopter aeromechanics and aeroacoustics prediction capabilities developed by Georgia Institute of Technology, the Pennsylvania State University, and Northern Arizona University under the Helicopter Quieting Program (HQP) sponsored by the Tactical Technology Office of the Defense Advanced Research Projects Agency (DARPA). First initiated in 2004, the goal of the HQP was to develop high fidelity, state-of-the-art computational tools for designing advanced helicopter rotors with reduced acoustic perceptibility and enhanced performance. A critical step towards achieving this objective is the development of rotorcraft prediction codes capable of assessing a wide range of helicopter configurations and operations for future rotorcraft designs. This includes novel next-generation rotor systems that incorporate innovative passive and/or active elements to meet future challenging military performance and survivability goals
    • …
    corecore