621 research outputs found

    Interval valued intuitionistic (S,T)(S,T)-fuzzy HvH_v-submodules

    Full text link
    On the basis of the concept of the interval valued intuitionistic fuzzy sets introduced by K.Atanassov, the notion of interval valued intuitionistic fuzzy HvH_v-submodules of an HvH_v-module with respect to tt-norm TT and ss-norm SS is given and the characteristic properties are described. The homomorphic image and the inverse image are investigated.In particular, the connections between interval valued intuitionistic (S,T)(S,T)-fuzzy HvH_v-submodules and interval valued intuitionistic (S,T)(S,T)-fuzzy submodules are discussed

    Peach Extrafloral Nectar Impacts Life Span and Reproduction of Adult Grapholita molesta (Busck) (Lepidoptera: Tortricidae) 1

    Get PDF
    ABSTRACT This study evaluated the longevity and fecundity of a laboratory strain of Grapholita molesta (Busck) (Lepidoptera: Tortricidae) when provided peach, Prunus persica L., extrafloral nectar for nourishment. Moths lived longer and females had a greater reproductive output when presented with extrafloral nectar and a source of water compared with moths provisioned only with water. Adult male G. molesta presented with nectar and water lived an average of 28.7 days, whereas, males provided only water lived about 17.8 days. Adult female G. molesta provided nectar and water lived 33.7 days and produced an average 255.9 fertile and 10.9 infertile eggs, whereas, females provided only water lived 14.4 days and produced an average 117.2 fertile and 2.1 infertile eggs. The higher number of infertile eggs laid by nectar fed females is attributed to an extended oviposition period of 29.4 days compared with 10.0 days for females provided only water. Peach extrafloral nectar did not affect the duration of preoviposition and postoviposition periods. It is quite possible that orchards planted with extrafloral nectar bearing varieties of peaches and nectarines may contribute to the longevity and reproductive potential of G. molesta in the field

    An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs

    Get PDF
    Background: Transcription factors (TFs) control transcription by binding to specific regions of DNA called transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions within a motif should be taken into account. However, this remains a challenging task owing to the fact that sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach that has been shown to be particularly appropriate for tackling problems that embody a high degree of uncertainty. Results: We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory. Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a function of their combined probability of occurrence, but also taking into account the individual importance of each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity and the specificity of two existing methods in all the experiments we performed. Conclusions: The results show that SCintuit improves the prediction quality for TFs of the existing approaches without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research problems. In this study the reliability of the IFS theory for motif discovery tasks is proven

    A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell

    Full text link
    Biocatalytic buckypaper electrodes modified with pyrroloquinoline quinone (PQQ)‐dependent glucose dehydrogenase and bilirubin oxidase for glucose oxidation and oxygen reduction, respectively, were prepared for their use in a biofuel cell. A small (millimeter‐scale; 2×3×2 mm3) enzyme‐based biofuel cell was tested in a model glucose‐containing aqueous solution, in human serum, and as an implanted device in a living gray garden slug (Deroceras reticulatum), producing electrical power in the range of 2–10 μW (depending on the glucose source). A microelectronic temperature‐sensing device equipped with a rechargeable supercapacitor, internal data memory and wireless data downloading capability was specifically designed for activation by the biofuel cell. The power management circuit in the device allowed the optimized use of the power provided by the biofuel cell dependent on the sensor operation activity. The whole system (power‐producing biofuel cell and power‐consuming sensor) operated autonomously by extracting electrical energy from the available environmental source, as exemplified by extracting power from the glucose‐containing hemolymph (blood substituting biofluid) in the slug to power the complete temperature sensor system and read out data wirelessly. Other sensor systems operating autonomously in remote locations based on the concept illustrated here are envisaged for monitoring different environmental conditions or can be specially designed for homeland security applications, particularly in detecting bioterrorism threats.Sluggish sensor? A microelectronic sensor device was powered by an enzyme biofuel cell implanted in a slug to operate autonomously.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/1/cphc201900700_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/2/cphc201900700.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/3/cphc201900700-sup-0001-misc_information.pd

    The First 1 1/2 Years of TOTEM Roman Pot Operation at LHC

    Get PDF
    Since the LHC running season 2010, the TOTEM Roman Pots (RPs) are fully operational and serve for collecting elastic and diffractive proton-proton scattering data. Like for other moveable devices approaching the high intensity LHC beams, a reliable and precise control of the RP position is critical to machine protection. After a review of the RP movement control and position interlock system, the crucial task of alignment will be discussed.Comment: 3 pages, 6 figures; 2nd International Particle Accelerator Conference (IPAC 2011), San Sebastian, Spain; contribution MOPO01

    Deregulated splicing is a major mechanism of RNA-induced toxicity in Huntington's disease

    Get PDF
    Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin (HTT) gene, translating into an elongated polyglutamine stretch. In addition to the neurotoxic mutant HTT protein, the mutant CAG repeat RNA can exert toxic functions by trapping RNA-binding proteins. While few examples of proteins that aberrantly bind to mutant HTT RNA and execute abnormal function in conjunction with the CAG repeat RNA have been described, an unbiased approach to identify the interactome of mutant HTT RNA is missing. Here, we describe the analysis of proteins that preferentially bind mutant HTT RNA using a mass spectrometry approach. We show that (I) the majority of proteins captured by mutant HTT RNA belong to the spliceosome pathway, (II) expression of mutant CAG repeat RNA induces mis-splicing in a HD cell model, (III) overexpression of one of the splice factors trapped by mutant HTT ameliorates the HD phenotype in a fly model and (VI) deregulated splicing occurs in human HD brain. Our data suggest that deregulated splicing is a prominent mechanism of RNA-induced toxicity in HD

    Construction of plant transformation vectors carrying beet necrotic yellow vein virus coat protein gene (ii)- plant transformation

    Get PDF
    Fragments containing the coat protein gene of beet necrotic yellow vein virus were cloned in two plant transformation vectors: pCAMBIA3301M with the bar gene as selectable marker, and pCAMBIA1304M, with resistance to hygromycin. Three constructs were made of each vector: CPL, containing coat protein gene with leader sequence; CPS with coat protein gene, and CPSas with coat protein gene in antisense orientation. Vectors pC3301MCPL, pC3301MCPS. and pC3301MCPSas were used in Agrobacterium—mediated transformation of Nicotiana tabacum (tobacco), Nicotiana excelsior and Nicotiana benthamiana. Regenerants that developed roots on selective media were tested for the presence of CP fragments and the bar gene, but most regenerants were nontransformed (50-83% escapes). After all rooted plants had been selfed, and T1 seed germinated on selective media, only plants descending from one N. excelsior regenerant transformed with pC3301MCPS were positive for presence of bar gene and CPS fragment. Tobacco and Nicotiana benthamiana were transformed with constructs pC1304MCPS and pC1304MCPSas. Transformation efficiency was much higher and approximately 50% of regenerants that rooted on media with 20 mg l−1 hygromycin were positive for the presence of CP fragments. All T1 plants were positive for presence of CP fragments
    corecore