81 research outputs found

    Isospin properties of electric dipole excitations in 48Ca

    Get PDF
    Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (\alpha,\alpha'\gamma) experiment at E_{\alpha}=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.Comment: 6 pages, 5 figures, as accepted in Phys. Lett.

    Systematic investigation of the elastic proton-deuteron differential cross section at intermediate energies

    Get PDF
    To investigate the importance of three-nucleon forces (3NF) systematically over a broad range of intermediate energies, the differential cross sections of elastic proton-deuteron scattering have been measured at proton bombarding energies of 108, 120, 135, 150, 170 and 190 MeV at center-of-mass angles between 3030^\circ and 170170^\circ. Comparisons with Faddeev calculations show unambiguously the shortcomings of calculations employing only two-body forces and the necessity of including 3NF. They also show the limitations of the latest few-nucleon calculations at backward angles, especially at higher beam energies. Some of these discrepancies could be partially due to relativistic effects. Data at lowest energy are also compared with a recent calculation based on \chipt

    Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(alpha,gamma)19Ne

    Full text link
    The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + alpha threshold. We have measured the alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction at 43 MeV/u. Combining our measurements with previous determinations of the radiative widths of these states, we conclude that no significant breakout from the hot CNO cycle into the rp process in novae is possible via 15O(alpha,gamma)19Ne, assuming current models accurately represent their temperature and density conditions

    Spin observables in deuteron-proton radiative capture at intermediate energies

    Get PDF
    A radiative deuteron-proton capture experiment was carried out at KVI using polarized-deuteron beams at incident energies of 55, 66.5, and 90 MeV/nucleon. Vector and tensor-analyzing powers were obtained for a large angular range. The results are interpreted with the help of Faddeev calculations, which are based on modern two- and three-nucleon potentials. Our data are described well by the calculations, and disagree significantly with the observed tensor anomaly at RCNP.Comment: 10 pages, 4 figures, submitted to PL

    Isospin Character of the Pygmy Dipole Resonance in 124Sn

    Full text link
    The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (a,a'g) coincidence method at E=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structure: one group of states which is excited in (a,a'g) as well as in (g,g') reactions and a group of states at higher energies which is only excited in (g,g') reactions. Calculations with the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle phonon model are in qualitative agreement with the experimental results and predict a low-lying isoscalar component dominated by neutron-skin oscillations and a higher-lying more isovector component on the tail of the giant dipole resonance

    Alpha-decay branching ratios of near-threshold states in <sup>19</sup>Ne and the astrophysical rate of <sup>15</sup> O(α, γ )<sup>19</sup>Ne

    Get PDF
    The 15O(α,γ)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + α threshold. We have measured the α-decay branching ratios for these states using the p(21lNe,t)19Ne reaction at 43 MeV/u.</p

    Proton-deuteron radiative capture cross sections at intermediate energies

    Get PDF
    Differential cross sections of the reaction p(d,3He)γp(d,^3{\rm He})\gamma have been measured at deuteron laboratory energies of 110, 133 and 180 MeV. The data were obtained with a coincidence setup measuring both the outgoing 3^3He and the photon. The data are compared with modern calculations including all possible meson-exchange currents and two- and three- nucleon forces in the potential. The data clearly show a preference for one of the models, although the shape of the angular distribution cannot be reproduced by any of the presented models.Comment: 6 pages, 6 figures, accepted for publication in EPJ

    A high-resolution tracking hodoscope based on capillary layers filled with liquid scintillator

    Get PDF
    Results are given on tests of a high-resolution tracking hodoscope based on layers of \hbox{26-μ\mum-bore} glass capillaries filled with organic liquid scintillator (1-methylnaphthalene doped with R39). The detector prototype consisted of three 2-mm-thick parallel layers, with surface areas of 2.1×212.1 \times 21~cm2^2. The layers had a centre-to-centre spacing of 6~mm, and were read by an optoelectronic chain comprising two electrostatically focused image intensifiers and an Electron-Bombarded Charge-Coupled Device (EBCCD). Tracks of cosmic-ray particles were recorded and analysed. The observed hit density was 6.6~hits/mm for particles crossing the layers perpendicularly, at a distance of 1~cm from the capillaries' readout end, and 4.2~hits/mm for particles at a distance of 20~cm. A track segment reconstructed in a single layer had an rms residual of \sim~20~μ\mum, and allowed determination of the track position in a neighbouring layer with a precision of \sim~170~μ\mum. This latter value corresponded to an rms angular resolution per layer of about 30~mrad. A comparison is made between capillary layers and silicon microstrip planes

    Structure of ⁷He studied with the ⁷Li(d,²He) reaction

    Get PDF
    A search for the Jπ = 1/2⁻ spin–orbit partner of the Jπ = 3/2⁻ ground state in ⁷He has been performed with the ⁷Li(d,²He) charge-exchange reaction. The results are incompatible with recent claims of such a state at very low excitation energy [Meister M et al 2002 Phys. Rev. Lett. 88 102501] but rather suggest a resonance with parameters Ex = (1.2⁺⁰.⁵₋₀.₄) MeV, Λ = (1.9⁺⁰.⁸₋₀.₄) MeV. GT strengths deduced for the transitions to the lowest states in 7He are in remarkable agreement with ab initio quantum Monte Carlo calculations
    corecore