220 research outputs found

    Importance of the Doppler Effect to the Determination of the Deuteron Binding Energy

    Get PDF
    The deuteron binding energy extracted from the reaction 1H(n,γ)2H{}^1H(n,\gamma){}^2H is reviewed with the exact relativistic formula, where the initial kinetic energy and the Doppler effect are taken into account. We find that the negligible initial kinetic energy of the neutron could cause a significant uncertainty which is beyond the errors available up to now. Therefore, we suggest an experiment which should include the detailed informations about the initial kinetic energy and the detection angle. It could reduce discrepancies among the recently reported values about the deuteron binding energy and pin down the uncertainty due to the Doppler broadening of γ\gamma ray.Comment: 5 page

    On Prospects for Exploration of Supersymmetry in Double Beta Decay Experiments

    Get PDF
    We analyze constraints on the parameters of the R-parity violating supersymmetry which can be extracted from non-observation of the neutrinoless nuclear double beta decay (0νββ0\nu\beta\beta) at a given half-life lower bound. Our analysis covers a large class of phenomenologically viable R-parity violating SUSY models. We introduce special characteristics: the SUSY sensitivity of a ββ\beta\beta decaying isotope and the SUSY reach of a 0νββ0\nu\beta\beta experiment. The former provides a physical criterion for a selection of the most promising isotopes for SUSY searches and the latter gives a measure of success for a 0νββ0\nu\beta\beta experiment in exploring the R-parity violating SUSY parameter space. On this basis we discuss prospects for exploration of supersymmetry in various 0νββ0\nu\beta\beta experiments.Comment: 11 pages, 5 Postscript figures. Modified and updated version is printed also in Proc. of NANP97 (JINR, Dubna, July 7--11, 1997): Phys. Atom Nucl, 1998, 61, vol. 6, p.1092--109

    Radiative neutron capture on a proton at BBN energies

    Full text link
    The total cross section for radiative neutron capture on a proton, npdγnp \to d \gamma, is evaluated at big bang nucleosynthesis (BBN) energies. The electromagnetic transition amplitudes are calculated up to next-to leading order within the framework of pionless effective field theory with dibaryon fields. We also calculate the dγnpd\gamma\to np cross section and the photon analyzing power for the dγnpd\vec{\gamma}\to np process from the amplitudes. The values of low energy constants that appear in the amplitudes are estimated by a Markov Chain Monte Carlo analysis using the relevant low energy experimental data. Our result agrees well with those of other theoretical calculations except for the npdγnp\to d\gamma cross section at some energies estimated by an R-matrix analysis. We also study the uncertainties in our estimation of the npdγnp\to d\gamma cross section at relevant BBN energies and find that the estimated cross section is reliable to within \sim1% error.Comment: 21 pages and 12 eps figures; 6 eps figures and 2 references added, and accepted for publication in Phys. Rev.

    Precise half-life measurement of the 10 h isomer in 154Tb

    Full text link
    The precise knowledge of the half-life of the reaction product is of crucial importance for a nuclear reaction cross section measurement carried out with the activation technique. The cross section of the 151Eu(alpha,n)154Tb reaction has been measured recently using the activation method, however, the half-life of the 10 h isomer in 154Tb has a relatively high uncertainty and ambiguous values can be found in the literature. Therefore, the precise half-life of the isomeric state has been measured and found to be 9.994 h +- 0.039 h. With careful analysis of the systematic errors, the uncertainty of this half-life value has been significantly reduced.Comment: Accepted for publication in Nuclear Physics

    The first result of the neutrino magnetic moment measurement in the GEMMA experiment

    Full text link
    The first result of the neutrino magnetic moment measurement at the Kalininskaya Nuclear Power Plant (KNPP) with the GEMMA spectrometer is presented. An antineutrino-electron scattering is investigated. A high-purity germanium detector of 1.5 kg placed 13.9 m away from the 3 GW reactor core is used in the spectrometer. The antineutrino flux is 2.73×1013νe/cm2/s2.73\times 10^{13} \nu_e / cm^2 / s. The differential method is used to extract the ν\nu-e electromagnetic scattering events. The scattered electron spectra taken in 6200 and 2064 hours for the reactor ON and OFF periods are compared. The upper limit for the neutrino magnetic moment μν<5.8×1011\mu_\nu < 5.8\times 10^{-11} Bohr magnetons at 90{%} CL is derived from the data processing.Comment: 9 pages, 10 figures, 2 table

    Study of 2 beta-decay of Mo-100 and Se-82 using the NEMO3 detector

    Get PDF
    After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T-1/2 > 3.1 x 10(23) y, 90% CL) and Se-82 (T-1/2 > 1.4 x 10(23) y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: 1.4 x 10(22) y (90% CL) for Mo-100 and T-1/2 > 1.2 x 10(22) y (90% CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are < (0.5-0.9) x 10(- 4) and <(0.7-1.6) x 10(- 4). Two-neutrino 2beta-decay half-lives have been measured with a high accuracy, (T1/2Mo)-Mo-100 = [7.68 +/- 0.02(stat) +/- 0.54(syst)] x 10(18) y and (T1/2Se)-Se-82 = [10.3 +/- 0.3(stat) +/- 0.7(syst)] x 10(19) y. (C) 2004 MAIK "Nauka/Interperiodica"

    Possible background reductions in double beta decay experiments

    Full text link
    The background induced by radioactive impurities of 208Tl^{208}\rm Tl and 214Bi^{214}\rm Bi in the source of the double beta experiment NEMO-3 has been investigated. New methods of data analysis which decrease the background from the above mentioned contamination are identified. The techniques can also be applied to other double beta decay experiments capable of measuring independently the energies of the two electrons.Comment: 15 pages, 13 figures, accepted in the Nuclear Instruments and Methods

    Measurement of double beta decay of ¹⁰⁰Mo to excited states in the NEMO 3 experiment

    Get PDF
    The double beta decay of ¹⁰⁰Mo to the 0_{1}^{+} and 2_{1}^{+} excited states of ¹⁰⁰Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of ¹⁰⁰Mo to the excited 0_{1}^{+} state is measured to be T_{1/2}^{2v} = [5.7_{-0.9}^{+1.3} (stat.) ± 0.8 (syst.)] x 10²⁰ y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0_{1}^{+} state has been found. The corresponding half-life limit is T_{1/2}^{0v} (0⁺→0_{1}^{+}) > 8.9 x 10²² y (at 90% C.L.). The search for the double beta decay to the 2_{1}^{+} excited state has allowed the determination of limits on the half-life for the two neutrino mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.1 x 10²¹ y (at 90% C.L.) and for the neutrinoless mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.6 x 10²³ y (at 90% C.L.)

    Study of 2b-decay of Mo-100 and Se-82 using the NEMO3 detector

    Full text link
    After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T_{1/2} > 3.1 10^{23} y, 90% CL) and Se-82 (T_{1/2} > 1.4 10^{23} y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: m < (0.8-1.2) eV and m < (1.5-3.1) eV, respectively. Also the limits on double-beta decay with Majoron emission are: T_{1/2} > 1.4 10^{22} y (90% CL) for Mo-100 and T_{1/2}> 1.2 10^{22} y (90%CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are g < (0.5-0.9) 10^{-4} and < (0.7-1.6) 10^{-4}. Two-neutrino 2b-decay half-lives have been measured with a high accuracy, T_{1/2} Mo-100 = [7.68 +- 0.02(stat) +- 0.54(syst) ] 10^{18} y and T_{1/2} Se-82 = [10.3 +- 0.3(stat) +- 0.7(syst) ] 10^{19} y.Comment: 5 pages, 4 figure

    Technical design and performance of the NEMO3 detector

    Full text link
    The development of the NEMO3 detector, which is now running in the Frejus Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun more than ten years ago. The NEMO3 detector uses a tracking-calorimeter technique in order to investigate double beta decay processes for several isotopes. The technical description of the detector is followed by the presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author: Corinne Augier ([email protected]
    corecore