145 research outputs found

    Drug-Related Problems in Prescribing for Pediatric Outpatients in Vietnam

    Get PDF
    BACKGROUND: Our study was conducted to determine the prevalence of drug-related problems (DRPs) in outpatient prescriptions, the impact of DRPs on treatment efficacy, safety, and cost, and the determinants of DRPs in prescribing for pediatric outpatients in Vietnam. METHODS: A retrospective cross-sectional study was conducted on pediatric outpatients at a pediatric hospital in Can Tho, Vietnam. DRPs were classified according to the Pharmaceutical Care Network Europe classification (PCNE) of 2020. The study determined prevalence of DRPs and their impacts on efficacy, safety, and cost. Multivariate regression was used to identify the determinants of DRPs. RESULTS: The study included 4339 patients (mean age 4.3, 55.8% male), with a total of 3994 DRPs, averaging 0.92 DRP/prescription. The proportion of prescriptions with at least one DRP was 65.7%. DRPs included inappropriate drug selection (35.6%), wrong time of dosing relative to meals (35.6%), inappropriate dosage form (9.3%), inappropriate indication (7.1%), and drug-drug interactions (0.3%). The consensus of experts was average when evaluating each aspect of efficiency reduction, safety reduction, and treatment cost increase, with Fleiss' coefficients of 0.558, 0.511, and 0.541, respectively (p < 0.001). Regarding prescriptions, 50.1% were assessed as reducing safety. The figures for increased costs and decreased treatment effectiveness were 29.0% and 23.9%, respectively. Patients who were ≤2 years old were more likely to have DRPs than patients aged 2 to 6 years old (OR = 0.696; 95% CI = 0.599-0.809) and patients aged over 6 years old (OR = 0.801; 95% CI = 0.672-0.955). Patients who had respiratory system disease were more likely to have DRPs than patients suffering from other diseases (OR = 0.715; 95% CI = 0.607-0.843). Patients with comorbidities were less likely to have DRPs than patients with no comorbidities (OR = 1.421; 95% CI = 1.219-1.655). Patients prescribed ≥5 drugs were more likely to have DRPs than patients who took fewer drugs (OR = 3.677; 95% CI = 2.907-4.650). CONCLUSION: The proportion of prescriptions in at least one DRP was quite high. Further studies should evaluate clinical significance and appropriate interventions, such as providing drug information and consulting doctors about DRPs

    Analytical study of the sth-order perturbative corrections to the solution to a one-dimensional harmonic oscillator perturbed by a spatially power-law potential Vper(x) = λxα

    Get PDF
    In this work, we present a rigorous mathematical scheme for the derivation of the sth-order perturbative corrections to the solution to a one-dimensional harmonic oscillator perturbed by the potential V-per(x) = lambda x(alpha), where alpha is a positive integer, using the non-degenerate time-independent perturbation theory. To do so, we derive a generalized formula for the integral I = integral(+infinity)(-infinity)x(alpha)exp(-x(2))H-n(x)H-m(x)d(x), where H-n(x) denotes the Hermite polynomial of degree n, using the generating function of orthogonal polynomials. Finally, the analytical results with alpha = 3 and alpha = 4 are discussed in detail and compared with the numerical calculations obtained by the Lagrange-mesh method

    Primary Care Influenza-like Illness Surveillance in Ho Chi Minh City, Vietnam 2013-2015

    Get PDF
    BACKGROUND: Year-round transmission of influenza has been detected in Vietnam through both national surveillance and other epidemiological studies. Understanding the demographic and clinical features of influenza-like-illness (ILI) presenting to primary care in urban Vietnam is vital to understand these transmission dynamics. METHODS: A prospective, observational study of patients with ILI in Ho Chi Minh City, Vietnam was conducted between August 2013 and November 2015 in a mix of public and private primary care settings. Molecular testing for Influenza A & B and 12 other respiratory viruses was performed. RESULTS: 1152 ILI patients were recruited. 322 and 136 subjects tested positive for influenza A and B, respectively. 193 subjects tested positive for another respiratory virus; most commonly rhinovirus and parainfluenza virus 3. Influenza was detected in 81% of the 116 study weeks. Three peaks of influenza activity were detected; an H3N2 peak April-June 2014, an influenza B peak July-December 2014, and a mixed H3N2 and H1N1 peak March-September 2015. Subjects recruited from private clinics were more likely to have higher income, and to have reported previous influenza vaccination. Antibiotic use was common (50.3%) despite limited evidence of bacterial infection. CONCLUSION: Influenza in southern Vietnam has complex transmission dynamics including periods of intense influenza activity of alternating types and subtypes. Broadening surveillance from hospital to the community in tropical settings is feasible and a valuable for improving our understanding of the global spread and evolution of the virus. This article is protected by copyright. All rights reserved

    Scanning Angle Plasmon Waveguide Resonance Raman Spectroscopy for the Analysis of Thin Polystyrene Films

    Get PDF
    Scanning angle (SA) Raman spectroscopy was used to characterize thin polymer films at a sapphire/50 nm gold film/polystyrene/air interface. When the polymer thickness is greater than ∼260 nm, this interface behaves as a plasmon waveguide; Raman scatter is greatly enhanced with both p- and s-polarized excitation compared to an interface without the gold film. In this study, the reflected light intensities from the interface and Raman spectra were collected as a function of incident angle for three samples with different polystyrene thicknesses. The Raman peak areas were well modeled with the calculated mean-square electric field (MSEF) integrated over the polymer film at varying incident angles. A 412 nm polystyrene plasmon waveguide generated 3.34× the Raman signal at 40.52° (the plasmon waveguide resonance angle) compared to the signal measured at 70.4° (the surface plasmon resonance angle). None of the studied polystyrene plasmon waveguides produced detectable Raman scatter using a 180° backscatter collection geometry, demonstrating the sensitivity of the SA Raman technique. The data highlight the ability to measure polymer thickness, chemical content, and, when combined with calculations of MSEF as a function of distance from the interface, details of polymer structure and order. The SA Raman spectroscopy thickness measurements agreed with those obtained from optical interferometery with an average difference of 2.6%. This technique has the potential to impact the rapidly developing technologies utilizing metal/polymer films for energy storage and electronic devices

    Synthetic biology approaches in drug discovery and pharmaceutical biotechnology

    Get PDF
    Synthetic biology is the attempt to apply the concepts of engineering to biological systems with the aim to create organisms with new emergent properties. These organisms might have desirable novel biosynthetic capabilities, act as biosensors or help us to understand the intricacies of living systems. This approach has the potential to assist the discovery and production of pharmaceutical compounds at various stages. New sources of bioactive compounds can be created in the form of genetically encoded small molecule libraries. The recombination of individual parts has been employed to design proteins that act as biosensors, which could be used to identify and quantify molecules of interest. New biosynthetic pathways may be designed by stitching together enzymes with desired activities, and genetic code expansion can be used to introduce new functionalities into peptides and proteins to increase their chemical scope and biological stability. This review aims to give an insight into recently developed individual components and modules that might serve as parts in a synthetic biology approach to pharmaceutical biotechnology

    Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019

    Get PDF
    Background Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990–2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100 000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals. Findings In 2019, 16 300 (95% uncertainty interval 14 200 to 18 900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73·7% (68·3 to 77·4) were classified as due to type 1 diabetes. The age-standardised death rate was 0·50 (0·44 to 0·58) per 100 000 population, and 15 900 (97·5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0·13 (0·12 to 0·14) per 100 000 population in the high SDI quintile, 0·60 (0·51 to 0·70) per 100 000 population in the low-middle SDI quintile, and 0·71 (0·60 to 0·86) per 100 000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r2=0·62). From 1990 to 2019, age-standardised death rates decreased globally by 17·0% (−28·4 to −2·9) for all diabetes, and by 21·0% (–33·0 to −5·9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (−13·6% [–28·4 to 3·4]) and for type 1 diabetes (−13·6% [–29·3 to 8·9]). Interpretation Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations.publishedVersio

    Health sector spending and spending on HIV/AIDS, tuberculosis, and malaria, and development assistance for health: progress towards Sustainable Development Goal 3

    Get PDF
    Background: Sustainable Development Goal (SDG) 3 aims to “ensure healthy lives and promote well-being for all at all ages”. While a substantial effort has been made to quantify progress towards SDG3, less research has focused on tracking spending towards this goal. We used spending estimates to measure progress in financing the priority areas of SDG3, examine the association between outcomes and financing, and identify where resource gains are most needed to achieve the SDG3 indicators for which data are available. Methods: We estimated domestic health spending, disaggregated by source (government, out-of-pocket, and prepaid private) from 1995 to 2017 for 195 countries and territories. For disease-specific health spending, we estimated spending for HIV/AIDS and tuberculosis for 135 low-income and middle-income countries, and malaria in 106 malaria-endemic countries, from 2000 to 2017. We also estimated development assistance for health (DAH) from 1990 to 2019, by source, disbursing development agency, recipient, and health focus area, including DAH for pandemic preparedness. Finally, we estimated future health spending for 195 countries and territories from 2018 until 2030. We report all spending estimates in inflation-adjusted 2019 US,unlessotherwisestated.Findings:SincethedevelopmentandimplementationoftheSDGsin2015,globalhealthspendinghasincreased,reaching, unless otherwise stated. Findings: Since the development and implementation of the SDGs in 2015, global health spending has increased, reaching 7·9 trillion (95% uncertainty interval 7·8–8·0) in 2017 and is expected to increase to 110trillion(107112)by2030.In2017,inlowincomeandmiddleincomecountriesspendingonHIV/AIDSwas11·0 trillion (10·7–11·2) by 2030. In 2017, in low-income and middle-income countries spending on HIV/AIDS was 20·2 billion (17·0–25·0) and on tuberculosis it was 109billion(103118),andinmalariaendemiccountriesspendingonmalariawas10·9 billion (10·3–11·8), and in malaria-endemic countries spending on malaria was 5·1 billion (4·9–5·4). Development assistance for health was 406billionin2019andHIV/AIDShasbeenthehealthfocusareatoreceivethehighestcontributionsince2004.In2019,40·6 billion in 2019 and HIV/AIDS has been the health focus area to receive the highest contribution since 2004. In 2019, 374 million of DAH was provided for pandemic preparedness, less than 1% of DAH. Although spending has increased across HIV/AIDS, tuberculosis, and malaria since 2015, spending has not increased in all countries, and outcomes in terms of prevalence, incidence, and per-capita spending have been mixed. The proportion of health spending from pooled sources is expected to increase from 81·6% (81·6–81·7) in 2015 to 83·1% (82·8–83·3) in 2030. Interpretation: Health spending on SDG3 priority areas has increased, but not in all countries, and progress towards meeting the SDG3 targets has been mixed and has varied by country and by target. The evidence on the scale-up of spending and improvements in health outcomes suggest a nuanced relationship, such that increases in spending do not always results in improvements in outcomes. Although countries will probably need more resources to achieve SDG3, other constraints in the broader health system such as inefficient allocation of resources across interventions and populations, weak governance systems, human resource shortages, and drug shortages, will also need to be addressed. Funding: The Bill & Melinda Gates Foundatio

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019: a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background: Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. // Methods: For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dose-specific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in country-reported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. // Findings: By 2019, global coverage of third-dose DTP (DTP3; 81·6% [95% uncertainty interval 80·4–82·7]) more than doubled from levels estimated in 1980 (39·9% [37·5–42·1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38·5% [35·4–41·3] in 1980 to 83·6% [82·3–84·8] in 2019). Third-dose polio vaccine (Pol3) coverage also increased, from 42·6% (41·4–44·1) in 1980 to 79·8% (78·4–81·1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56·8 million (52·6–60·9) to 14·5 million (13·4–15·9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. // Interpretation: After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    corecore