18 research outputs found

    Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation.

    Get PDF
    Studying nanomaterial piezoelectricity and triboelectricity is attractive for energy and sensing applications. However, quantitative characterisation of electromechanical effects in nanomaterials is challenging due to practical limitations and possible combination of effects, resulting in contradicting reports at times. When it comes to piezoelectricity at the nanoscale, piezoresponse force microscopy (PFM) is the default characterisation tool. In PFM the converse piezoelectric effect is measured - the conversion from electrical signal to mechanical response. However, there is an underlying desire to measure the direct piezoelectric effect - conversion of mechanical deformation to an electrical signal. This corresponds to energy harvesting and sensing. Here we present time-resolved open-circuit conductive atomic force microscopy (cAFM) as a new methodology to carry out direct electromechanical characterisation. We show, both theoretically and experimentally, that the standard short-circuit cAFM mode is inadequate for piezoelectric characterisation, and that resulting measurements are governed by competing mechanisms. We apply the new methodology to nanowires of GaAs, an important semiconductor, with relatively low piezoelectric coefficients. The results suggest that time-resolved operation distinguishes between triboelectric and piezoelectric signals, and that by measuring the open-circuit voltage rather than short-circuit current, the new methodology allows quantitative characterisation of the vertical piezoelectric coefficient. The result for GaAs nanowires, ∌ 1-3 pm V-1, is in good agreement with existing knowledge and theory. This method represents a significant advance in understanding the coexistence of different electromechanical effects, and in quantitative piezoelectric nanoscale characterisation. The easy implementation will enable better understanding of electromechanics at the nanoscale

    Molecular beam epitaxy of InAs nanowires in SiO2 nanotube templates: challenges and prospects for integration of III-Vs on Si

    Get PDF
    Guided growth of semiconductor nanowires in nanotube templates has been considered as a potential platform for reproducible integration of III-Vs on silicon or other mismatched substrates. Herein, we report on the challenges and prospects of molecular beam epitaxy of InAs nanowires on SiO2/Si nanotube templates. We show how and under which conditions the nanowire growth is initiated by In-assisted vapor-liquid-solid growth enabled by the local conditions inside the nanotube template. The conditions for high yield of vertical nanowires are investigated in terms of the nanotube depth, diameter and V/III flux ratios. We present a model that further substantiates our findings. This work opens new perspectives for monolithic integration of III-Vs on the silicon platform enabling new applications in the electronics, optoelectronics and energy harvesting arena

    Nanoporous silicon tubes: the role of geometry in nanostructure formation and application to light emitting diodes

    Get PDF
    Obtaining light emission from silicon has been the holy grail of optoelectronics over the last few decades. One of the most common methods for obtaining light emission from silicon is to reduce it to a nanoscale structure, for example by producing porous silicon. Here, we present a method for the large-area fabrication of porous silicon microtubes by the stain etching of silicon micropillar arrays. We explain and model how the formation of the microtubes is influenced by the morphology of the substrate, especially the concave or convex character of the 3D features. Light emission is demonstrated at the micro- and nanoscale respectively by photo- and cathodoluminescence. Finally, we demonstrate a 0.55 cm(2) device that can work as a photodetector with 2.3% conversion efficiency under one sun illumination, and also as a broadband light emitting diode, illustrating the applicability of our results for optoelectronic applications

    Engineering the Size Distributions of Ordered GaAs Nanowires on Silicon

    Get PDF
    Reproducible integration of III-V semiconductors on silicon can open new path toward CMOS compatible optoelectronics and novel design schemes in next generation solar cells. Ordered arrays of nanowires could accomplish this task, provided they are obtained in high yield and uniformity. In this work, we provide understanding on the physical factors affecting size uniformity in ordered GaAs arrays grown on silicon. We show that the length and diameter distributions in the initial stage of growth are not much influenced. by the Poissonian fluctuation-induced broadening, but rather are determined by the long incubation stage. We also show that the size distributions are consistent with the double exponential shapes typical for macroscopic nucleation with a large critical length after Which the nanowires grow irreversibly. The size uniformity is dramatically improved by increasing the As-4 flux, suggesting, a new path for obtaining highly uniform arrays of GaAs nanowires on silicon

    Bistability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs nanowires

    Get PDF
    Achieving quantum confinement by bottom-up growth of nanowires has so far been limited to the ability of obtaining stable metal droplets of radii around 10 nm or less. This is within reach for gold-assisted growth. Because of the necessity to maintain the group III droplets during growth, direct synthesis of quantum sized structures becomes much more challenging for self-assisted III–V nanowires. In this work, we elucidate and solve the challenges that involve the synthesis of gallium-assisted quantum-sized GaAs nanowires. We demonstrate the existence of two stable contact angles for the gallium droplet on top of GaAs nanowires. Contact angle around 130° fosters a continuous increase in the nanowire radius, while 90° allows for the stable growth of ultrathin tops. The experimental results are fully consistent with our model that explains the observed morphological evolution under the two different scenarios. We provide a generalized theory of self-assisted III–V nanowires that describes simultaneously the droplet shape relaxation and the NW radius evolution. Bistability of the contact angle described here should be the general phenomenon that pertains for any vapor–liquid–solid nanowires and significantly refines our picture of how nanowires grow. Overall, our results suggest a new path for obtaining ultrathin one-dimensional III–V nanostructures for studying lateral confinement of carriers

    High Yield of GaAs Nanowire Arrays on Si Mediated by the Pinning and Contact Angle of Ga

    Get PDF
    GaAs nanowire arrays on Silicon offer great perspectives in the :optoeleetronics and solar cell industry. To fulfill this potential, gold-free growth in predetermined positions should be achieved. Ga-assisted growth of GaAs nano-wires in the form of array has been shown to be challenging and difficult to reproduce. In this work, we provide some of the key elements for obtaining a high yield of GaAs nanowires on patterned Si in a reproducible way: contact angle and pinning of the Ga droplet inside the apertures achieved by the modification of the surface properties of the nanoscale areas exposed to growth. As an example, an amorphous silicon layer between the crystalline substrate and the Oxide mask results in a contact angle around 90 degrees, leading to a high yield of vertical nanowires: Another example for tuning the Contact angle is anticipated, native oxide with controlled thickness. This work opens new perspectives for the rational and reproducible growth of GaAs nanowire arrays on silicon

    Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation

    No full text
    Studying nanomaterial piezoelectricity and triboelectricity is attractive for energy and sensing applications. However, quantitative characterisation of electromechanical effects in nanomaterials is challenging due to practical limitations and possible combination of effects, resulting in contradicting reports at times. When it comes to piezoelectricity at the nanoscale, piezoresponse force microscopy (PFM) is the default characterisation tool. In PFM the converse piezoelectric effect is measured - the conversion from electrical signal to mechanical response. However, there is an underlying desire to measure the direct piezoelectric effect - conversion of mechanical deformation to an electrical signal. This corresponds to energy harvesting and sensing. Here we present time-resolved open-circuit conductive atomic force microscopy (cAFM) as a new methodology to carry out direct electromechanical characterisation. We show, both theoretically and experimentally, that the standard short-circuit cAFM mode is inadequate for piezoelectric characterisation, and that resulting measurements are governed by competing mechanisms. We apply the new methodology to nanowires of GaAs, an important semiconductor, with relatively low piezoelectric coefficients. The results suggest that time-resolved operation distinguishes between triboelectric and piezoelectric signals, and that by measuring the open-circuit voltage rather than short-circuit current, the new methodology allows quantitative characterisation of the vertical piezoelectric coefficient. The result for GaAs nanowires, similar to 1-3 pm V-1, is in good agreement with existing knowledge and theory. This method represents a significant advance in understanding the coexistence of different electromechanical effects, and in quantitative piezoelectric nanoscale characterisation. The easy implementation will enable better understanding of electromechanics at the nanoscale
    corecore