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Abstract—Plasmonic photodetectors are attracting the atten-
tion of the photonics community. Plasmonics is attractive because
metallic structures have the ability to confine light by coupling an
electromagnetic wave to charged carrier oscillations at the sur-
face of the metal. The wavelength of such oscillations can be much
smaller than the corresponding light wavelength in vacuum. This
enables the light-matter interaction on a deep subwavelength scale,
which in turn allows for more compact and potentially higher speed
devices. In this review, we discuss different types of photodetectors
and ways in which plasmonics can be applied to them. We elucidate
several plasmonic photodetector concepts/schemes and discuss the
main physical principles behind their operation. Finally, we reflect
on the characteristics of an “ideal” photodetector and propose a
device that might be the perfect plasmonic detector.

Index Terms—Photodetectors, plasmons, waveguides, Schottky
diodes, nanotechnology, nanowires, uni-traveling-carrier, silicon-
compatible photonics.

I. INTRODUCTION

P LASMONICS has received a lot of attention in the last
decades. By utilizing the ability of metals to constrain light

at a deep-subwavelength scale, plasmonics has already allowed
to considerably shrink the device size of photonic components
[1]–[8]. This size reduction brings the technology one step closer
to a fusion of optical and electronic components at the same size
scale [9]. This opens a path to a new generation of ultra-dense
interconnects [10] with monolithically integrated optoelectronic
interfaces. In addition, plasmonics might be a path to boost the
operation speed [11]–[13]. And indeed, ultra-fast photodetec-
tors are of high demand in the telecommunications and sensing
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market [14]; in the former to decode optical high-speed sig-
nals, and in the latter to be used when high-speed detection is
required [15].

In recent years, many different plasmonic designs have been
proposed in a wide range of photonic applications from the THz
region to the ultraviolet [2], [8], [16]–[19]. Plasmonic compo-
nents have already found applications as band-pass filters in
various sensors and other color-sensitive elements [20], [21], to
make lasers [22], [23], to concentrate light in order to increase
absorption in 2D-materials [24]–[26], to enhance photoemis-
sion in hot-carrier detectors [16], [27], [28] and in various other
applications where a high light concentration (strong light con-
finement) is required [29]–[33].

Here, we review and assess different plasmonic photodetec-
tor concepts. We have divided them according to the absorption
material, the detection type and the plasmonic enhancement
concept. We then discuss advantages of each concept and subse-
quently illustrate the principle with important examples. Finally,
we propose a plasmonically enhanced uni-traveling-carrier
(UTC)-nanowire photodetector to complement the current
plasmonic schemes by an ultra-fast, low dark current detector
with a large dynamic range that is compatible with the silicon
platform.

II. PHOTODETECTOR – A CLASSIFICATION

Plasmonic photodetectors naturally include metallic ele-
ments. The role of such elements can be of two kinds: (1)
Metals can constitute the absorber in hot-carrier devices; (2)
Metals can provide enhancement of electromagnetic field in-
side an absorber. Fig. 1 shows a simplified classification graph
of plasmonic photodetectors. We first differentiate between de-
tectors that rely on semiconductors or metals (hot-carrier pho-
todetector type) as an absorber. We then classify photodetectors
according to one of four basic operation schemes: The photo-
conductor detector, the p-i-n detector, the tunnel-junction, and
the Schottky-detector. The Schottky and tunnel-junction opera-
tion schemes are also found in plasmonic hot-carrier detectors.
Last, each of the detector types can be plasmonically enhanced
by three basic forms: By a localized plasmon polarition in a
metallic nanoparticle, by a surface plasmonic polariton (SPP)
in a waveguide, or by a grating type plasmon. Note that both
semiconductor and hot-carrier photodetectors may adopt plas-
monic field enhancement schemes to maximize the efficiency
[34], [35].
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Fig. 1. Simplified classification graph of plasmonic photodetectors. The classification is organized along the “Absorbing Material” type, the “Detector Type”
and the “Plasmonic Field Enhancement” type. The absorbing material typically is a semiconductor. However, lately detectors utilizing metal as an absorber are
used. They are called hot-carrier photodetectors because electrons are being ejected from the metal where they were generated in a “hot” (non-thermalized) state.
Among the many photodetector types we have selected four popular schemes: The tunnel-junction, p-i-n, Schottky and the photoconductor type. Any of these
types can be plasmonically enhanced by a local, waveguide or grating approach.

A. Semiconductor Absorber Type Photodetectors

Among the semiconductor absorber type photodetectors the
classic photoconductor is the simplest (because it introduces
no inter-material borders or doping within its structure). This
kind of detectors consists of an absorber placed between two
contacts under external bias. The incident radiation creates ad-
ditional charge carriers within the absorber increasing its con-
ductivity, which creates the detectable photocurrent. Typically,
these devices have a high dark current due to the absence of
a depletion region. Yet, photoconductors can be fast detectors
[36]. A much lower dark current is found in p-i-n type pho-
todetectors. The existence of a depletion region - created by
application of a reverse bias to the junction - results in a low
dark current value [37]. Still, this structure is not optimal from
the point of view of carrier extraction speed since a bulk charge
appearing due the difference in mobility of electrons and holes
limits the detector bandwidth [38], [39]. The latter is addressed
by UTC (Uni-Traveling-Carrier) photodiodes that use hetero-
structures to make only electrons contribute to the signal current

[38]–[41]. The downside of such detectors is the limited (com-
paring to p-i-n) thickness available for the absorption region
(p-type) due to the need for electrons to diffuse out. This in turn
can be addressed through a hetero-structure within the p-type re-
gion, which however makes the whole design more complicated
[42]. Schottky-contacts can also be used for carrier separation.
However, this commonly leads to a narrower depletion region
compared to p-i-n and as a consequence higher dark currents.
Lastly, oxide tunnel-junctions may be used. These ideally re-
quire high energy photons, i.e., work best for short wavelengths.

B. Hot-Carrier Type Photodetectors

Metallic absorber type detectors (or hot-carrier detectors) al-
low to introduce plasmonic field-enhancement in the most di-
rect manner because they intrinsically use metals as an absorbing
material. In these detectors, the strong absorption characteristics
of a SPP are used to generate hot carriers. Since SPPs propagate
along the surface of a metal, the hot carriers can be accumu-
lated right at a thin oxide layer that forms a tunnel-junction or
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Fig. 2. Plasmon dispersion for a surface plasmon polarition on a flat border
between metal with permittivity εm and dielectric with permittivity εd = 1.
The real part of β represents the in-plane wave-vector of SPP mode and thus is
inversely proportional to the mode wavelength/size (λ = 2π

Re(β ) ). The imaginary
part of β represents propagation losses of the SPP mode, so that the propagation
distance of the mode is l = 2π

Im(β ) .

at a Schottky-contact between the metal and the semiconductor.
This energy barrier is used for selecting the hot carriers and
blocking off carriers in thermal equilibrium (dark current) [43].
The hot-carrier type detectors represent another ultra-fast de-
tection scheme. The detectors however experience limitations
related to the injection probability of the hot electrons from
the metal to the semiconductor. This is due to the momentum
mismatch and its isotropic distribution upon generation of the
carriers in the metal [27], [44]. It is therefore difficult to reach
high responsivities for signals at a longer wavelength.

C. Plasmonically Enhanced Detection Schemes

Each of the aforementioned detectors may be enhanced by
plasmonics. Plasmonic field-enhancement takes advantage of
the fact that electromagnetic field couples to charge oscillations
in a metal. These hybrid charge/external field modes (plasmon
polaritons) can be scaled down in size to the dimension of a
charge oscillation in a metal. The size of such an oscillation
can be much smaller than the corresponding light wavelength
in vacuum, allowing plasmonic devices to operate at a deep-
subwavelength scale. The minimal scale to which light can be
confined is largely defined by the metal and is smaller (higher
field-confinement) for more conductive (lower loss) metals. The
concept is illustrated on Fig. 2. To plot the graphs, we used the
classic equation for the SPP dispersion

β =
ω

c

√
εm εd

εm + εd
, εm = 1 − ωp

ω2 + iγω
,

where εd is the dielectric permittivity, εm is the Drude model
permittivity of metal (ωp - plasma frequency, γ - damping) and
β is the propagation constant. In the case of a metal with losses
we assigned γ = 0.1ωp .

The dispersion of a lossless plasmon would permit an in-
finitely large β as the frequency approaches the surface plasma

frequency, which corresponds to an infinitely small SPP wave-
length. In the presence of losses the SPP wavelength is still
sub-diffraction limited and is smaller than a photon wave-
length, yet the size is limited by the maximum value of β. The
slope of the dispersion plot gives an additional information. It
indicates a decrease of the group velocity as the frequency ap-
proaches the SPP resonance frequency. This effect can be ex-
ploited to enhance light-matter interaction. However, the more
light is confined in the metal the lower the cross section to
capture an optical signal and the higher the conductive losses.
The propagation losses can be derived from the imaginary part
of the dispersion plot. Thus, to utilize plasmonics efficiently
an optimal point between high light-confinement and absorp-
tion as well as coupling losses to the external field needs to
be found.

Local plasmonic field enhancement is commonly realized
through independently acting metallic resonators or nanopar-
ticles. In a localized plasmon an incident electromagnetic wave
moves charges inside the metal that resonate with the plas-
monic modes of the resonator/nanoparticle. Depending on the
size and shape of such metal structures both the resonance
wavelength and the field confinement can be adjusted. Be-
cause local plasmonic enhancements with metal nanoparti-
cles are resonating independently, it is possible to deposit
them directly from a solution. This allows nanoparticle type
of plasmonic field-enhancement to be applied to a large vari-
ety of devices with relatively straightforward post-processing
[45], [46].

In the plasmonic waveguide enhancement approach the light
is coupled into a plasmonic waveguide such that the highest
field concentration is occurring in the absorber, which also con-
stitutes part of the waveguide. This approach allows for a better
control of the plasmonic mode behavior as well as the inter-
action volume between the mode and an active material of the
detector. However, coupling in and out of the waveguide might
be required and can introduce considerable losses [47]–[49].
This type of plasmonic enhancement is most suitable when the
interaction volume between light and an active material is too
small for direct vertical coupling. For example, single layer
graphene is a 2D-material with a uniquely tunable band gap,
but it only absorbs few percent of incident light under normal
illumination. In the waveguide configuration, the interaction
length between waveguide mode and graphene can be tuned
through the length of the graphene waveguide section. Thus,
a thin layer of graphene can yield an efficient photodetector
[50], [51].

The third way to implement plasmonic-field enhancement
is by plasmonic gratings – periodic metallic structures on a
surface. The grating supports plasmonic modes propagating
alongside the grating. A noticeable advantage of this plasmonic
enhancement type over the waveguide approach is that it does
not require a separate coupling. Such detector geometries can be
matched to the geometry of an optical fiber. In general grating-
type plasmonic detectors are better suited for receiving the sig-
nal directly from free space than the waveguide-type due to the
waveguide coupling losses.
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D. Characteristics of a Detector: Noise, Quantum Efficiency,
Bandwidth

Important characteristics of a photodetector are: Noise, dark
current, bandwidth and quantum efficiency (QE). Knowing them
and the geometrical parameters of the detector allows one to
calculate other relevant quantities such as detectivity or noise
equivalent power.

Noise in a photodetector has three main components: (1)
Johnson-Nyquist noise created by thermal fluctuations of volt-
age on the load resistance, (2) shot noise occurring due to the
quantum nature of the charge carriers, and (3) flicker (pink or
1/f) noise whose spectrum power density is roughly inversely
proportional to the frequency. Important to note that depending
on the specific structure of a detector other noise components
can be present such as the short channel excess noise in the
field effect transistor [52], [53]. The Johnson-Nyquist noise is
described by the variance

〈
J2

th

〉
=

4kB T

RL
Δν,

where RL is the external load and Δν is the detector bandwidth,
kB is the Boltzmann constant and T is the temperature. This
noise is affecting the current that is measured on the load but
is external to the detector itself. The shot noise occurs due
to the fact that current flow is not continuous but consists of a
large number of elementary charges carried by charged particles.
Assuming Poisson statistics for the arrival of such carriers at
respective contacts one can obtain:

〈
J2

sh

〉
= 2e (Js + Jd) Δν,

where Js is the corresponding photodetector current that is creat-
ing the noise. Shot noise in photodetectors has two components:
Signal Js and dark current noise Jd . This noise is particularly
problematic for detectors with low QEs and high dark currents.
The flicker noise or 1/f noise is created by local oscillations in a
conductor and depends on such things as the number of carriers
or their mobility. It is relevant at lower frequencies.

The dark current has three main components for the detector
types listed in Fig. 1: Semiconductor dark current, Schottky-
barrier dark current and tunneling-junction dark current. The
semiconductor dark current can be described by

Jd,sem = SeE

(
μeNC e−

W C −W f e
k T + μhNV e−

W f h −W V
k T

)
,

where S is a cross-section through which the current flows, E is
the applied electric field, μe,h are carrier mobilities, WC,V ,f e,f h

are the energies of conduction band, valence band, quasi-Fermi-
level of electrons, quasi-Fermi-level of holes and NC,V are the
effective densities of states in the bands. The quasi-Fermi levels
depend on the offset bias and respective carrier densities. The
Jd,sem is directly proportional to the carrier densities and is high
for photoconductors whereas it is low in p-i-n photodiodes. The
Schottky-barrier dark current can be calculated as follows [43]:

Jd,SB = SAGT 2e−
eφ
k T

(
e

eV
k T − 1

)
,

where φ is the height of the Schottky-barrier (in Volts), V is the
bias applied across the junction and AG is the Richardson con-
stant [54]. This current component is dominant in hot-carrier
Schottky detectors due to their low QE. The tunneling cur-
rent through a potential barrier can be calculated through the
Wentzel-Kramers-Brillouin approximation for the Schrodinger
equation and for low electron energies (comparing to the bar-
rier height) it is roughly proportional to the square of applied
voltage [55]

Jtunn = CV 2 ,

where C is a constant. Similar to the Schottky-barrier dark cur-
rent this type of dark current is often dominant in the hot-carrier
type detectors due to a low QE.

The photocurrent Is of a signal generated by an incident
signal Ps directly depends on the quantum efficiency (QE).

Is,d = QE · e

�ω
Ps = ηaηi,

where e is the elementary charge and �ω the photon energy. The
QE of a detector is given by

QE =
#Photons absorbed

#Photons incident
· #Charges extracted

#Photons absorbed
= ηaηi

It can thus be organized around two terms: (1) The absorp-
tion efficiency ηa and (2) the internal quantum efficiency ηi .
The absorption efficiency can be derived from the exponential
dependence of the light intensity on the propagation length l

I = I0e
−αl ,

where α is the absorption coefficient. So for the absorption
efficiency we have: ηa = (1 − R) · (1 − e−αl) where R is the
reflectivity. The internal quantum efficiency accounts for the
finite life-time and velocity of carriers that lead to loss of carriers
that no longer contribute to the detector current. So ideally a
detector should be long enough to absorb most of the incident
light but not too long to avoid loss of carriers. Worth to note
that to increase the internal quantum efficiency additional gain
mechanisms can be introduced such as avalanche multiplication
[56] and photoconductive gain [57].

The 3 dB frequency response or bandwidth of a photodiode
also depends on the length. On the one hand a short length pro-
vides the fastest carrier extraction time that should result in a
high bandwidth. On the other hand the short length increase the
capacitance of the photodetector which limits the bandwidth. To
illustrate how the bandwidth of a detector depends on its prop-
erties let’s consider a simple model: A device with an absorber
thickness d, with carrier extraction time τe = 1

ve
d (ve is the car-

rier velocity under the given bias), recombination time τr and
capacitive discharge time τRC = RC = RεARC d−1 (assuming
a plate capacitor of area ARC with a dielectric of permittivity
ε). In this model the impulse response of the device can be ap-
proximated by a multiplication of the impulse responses of the
carrier extraction and recombination that needs to be convoluted
with the impulse response of the capacitive discharge

h (t) = (he (t) · hr (t)) ∗ hRC (t) ,
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Fig. 3. (a) Impulse responses of carrier extraction, recombination and capaci-
tor (d - absorber thickness, τr - recombination time). (b) 3 db bandwidth for the
full device (red), extraction time (orange), recombination time (green), capaci-
tor (blue). QE-scale is shown on the right side. QE drops down with decreasing
recombination time.

where he(t) is a rectangular-shaped function with the values
1 for t ∈ [0, τe ] and 0 otherwise, hr is an exponential decay
function with the time constant τr . Likewise, hRC is an expo-
nential decay with time constant τRC . In the frequency domain
multiplications become convolutions and vice-versa

H (ω) = (He (ω) ∗ Hr (ω)) · HRC (ω) .

The dependence of the 3 dB bandwidth of the correspond-
ing model parameters is shown in Fig. 3. For the modeling we
used νe ≈ 3 · 106 · cm/s, εARC ≈ 10 · pF · nm and R = 50 Ω.
One can see that at small absorber thickness d the bandwidth
is defined by the capacitor response whereas for large d it de-
pends on the carrier recombination time. If the recombination
is slow, most of the carriers can reach corresponding contacts
– then the bandwidth has an optimum in relation to the device
thickness defined by the optimal point between extraction time
and capacitor time constant. If the recombination is fast the car-
riers from far ends of the device will never reach their contacts
providing higher bandwidth. However, in this case, the ratio of
extracted carriers and therefore the internal quantum efficiency
goes down.

TABLE I
DETECTOR TYPES PROS & CONS

Fig. 4. (a) Schematic illustration of plasmonically enhanced hot-carrier
Shottky-photodetector on silicon. The light is passing through the silicon sub-
strate and is being enhanced on the tip of a reversed pyramid covered by a
layer of aluminum. (b) Schematic illustration of corresponding band structure
and hot-carrier injection. The detector shown was designed to function at room
temperature for wavelengths around 2.5 μm. (See [43], [60].).

An attempt to sum up the section is presented in Table I. The
table marks each property by “–”,”-+”,”+-”,”+” and “++” in
order from poor- to good-performance. It should be noted, that
the table is only marking the commonly occurring properties
of photodetectors. There are always schemes that under- and
over-perform with respect to what is expected.

In the following sections, we will elucidate the three types of
plasmonic field enhancements to improve photodetection.

III. IMPLEMENTATION EXAMPLES OF PLASMONIC DETECTORS

Subsequently, we elucidate the plasmonic concepts by dis-
cussing different detection types. We have organized the differ-
ent implementation schemes along the three field enhancement
schemes discussed above.

A. Localized Plasmonic Field Enhancement Photodetectors

Localized plasmonic enhancement can be used in multiple
ways to enhance photodetection.

In a first example the localized plasmonic enhancement is
used to build a cheap mid-IR detector on silicon. Normally,
mid-IR detectors involve exotic materials [58], [59]. However,
by resorting to a hot-carrier Schottky type detector one should
be able to detect mid-IR light even at a silicon-Al interface. This
would make them suitable for large scale production in silicon.
Yet, hot carrier type detectors tend to have high dark current for
longer wavelengths. In Fig. 4, this is solved by minimizing the
Schottky-contact area while maintaining a high level of light ab-
sorption by means of a localized plasmonic field enhancement
[43], [60]. In more detail, Fig. 4(a) shows the schematic of the
basic element of a photodetector for wavelength of 2.5 μm -
a silicon pyramid with an Al-covered tip. The detector con-
centrates light that passes through a silicon wafer along an
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Fig. 5. Schematic illustration of a MoS2 monolayer photoconductive pho-
todetector plasmonically enhanced by dispersed Au nanoparticles. With surface
density of less than 1% the nanoparticles yield threefold enhancement in the
photocurrent. (See [63]).

aluminum-covered tip of the pyramid, so that localized plas-
mon resonances are excited at the Al-Si interface. Hot-carriers
generated in the Al are then being injected into the Si through
the Schottky-barrier creating a photocurrent, Fig. 4(b). It was
shown that there is an optimum value for the Schottky-barrier
height which provides the best trade-off between injection of
carriers through the barrier and the dark-current noise (in terms
of signal-to-noise ratio) [43]. The authors of this work reported
on a responsivity of 0.1 mA/W, which is not large but new for a
mid-IR detector in this material system.

In the next example, localized plasmonic enhancement is em-
ployed to increase the absorption efficiency of emerging 2D
materials which, due to advancement in production technology,
recently gained considerable attention in the field of photode-
tectors [25], [61], [62]. 2D materials are attractive as they give
access to materials with new bandgaps and other interesting
characteristics. Yet, a single monolayer by itself is not suffi-
cient to absorb enough light to make an efficient detector which
makes it necessary to enhance the absorption. In the example
of Fig. 5 the field was enhanced in the vicinity of the absorbing
monolayer by dispersing core-shell Si-Au nanoparticles [63].
The detector itself acts as a photoconductor, where the single
crystal monolayer of MoS2 is the conducting absorber. MoS2
was chosen as its direct band gap can be tuned from the visible
to the UV range [64]–[66]. The monolayer of MoS2 was pro-
duced using a chemical vapor deposition technique that opens
up commercial application possibilities for the technology. The
nanoparticles were deposited through a solution process on top
of a ready device with surface density of less than 1%, and
yielded a threefold enhancement in the photocurrent (to around
0.8 mA/W at wavelength of 630 nm). A significant role in the
responsivity enhancement was played by the tunability of the
plasmonic resonance frequency of nanoparticles that can be ad-
justed to the absorption of the monolayer [67].

In the same way that localized plasmonic enhancement was
applied to monolayer materials the technique can be used on

Fig. 6. Schematic illustration of a QD-photodetctor enhanced by plasmonic
Ag nanoparticles beneath the QD-film. At wavelength of 1 μm the detector
showed a responsivity of 300 A/W (See [68]).

Fig. 7. Schematic illustration of a hybrid perovskite/graphene photodetector
with plasmonic enhancement. The enhancement comes from Au nanoparticles
dispersed beneath the graphene layer. At a wavelength of 0.5 μm the detector
showed responsivity of 2000 A/W (See [71]).

quantum-dot (QD) structures [68]. QD-based detectors are at-
tractive because they can be fabricated with a simple deposition
technique and because they offer a possibility to tune the band
gap across a wide spectral range between the infrared and the
visible. Yet, the absorption coefficient of QD films is not suf-
ficient to absorb all the incident light within a thin QD layer.
A thin layer however, is needed to keep the dark current of
the photoconductive detector reasonably low. In addition, a thin
layer can also be advantageous to efficiently extract carriers
within the carrier life-time given the low mobility of the QD
films [68], [69]. Fig. 6 shows such a detector based on a few
hundred nm thick film of colloidal quantum dots. The reported
results showed that the photoresponse of the studied QD pho-
todetector can be increased more than twofold by the application
of Ag nanoparticles on the back side of the QD-film [68]. The
responsivity shown is around 300 A/W at a wavelength of 1 μm.

Recently, photo-conductive gains in the order of 108 were
reported in hybrid graphene-absorber stacks [57]. It would thus
be interesting to apply the concept to a large variety of mate-
rials. In particular to materials where the carrier lifetime and
mobility require a thin absorber layer. Fig. 7 shows an ex-
ample of such a hybrid graphene-perovskite photoconductive
detector. Perovskites have become popular absorbers because
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Fig. 8. Schematic illustration of a plasmonic waveguide photoconductive Ge
detector on Si/SiO2 substrate. The photodetector has a frequency response
beyond 100 GHz and offers a responsivity of 0.38 A/W. (See [73], [74]).

they are easy to deposit and showed high efficiency in the field
of photovoltaics. They offer a high carrier-lifetime but suffer
from a modest carrier mobility [70]. The carriers have thus to
be extracted within a thin layer close to the graphene conduc-
tive layer. By applying dispersed plasmonic particles below the
graphene layer the electromagnetic field is enhanced near the
graphene perovskite border, promoting a fast carrier extraction
[71]. Once the carriers have reached the graphene, they benefit
from the high carrier mobility yielding a large photoconductive
gain [57], [72]. In the scheme reported in [71], Fig. 7, the ad-
ditional plasmonic enhancement in form of Au nanoparticles
located beneath the graphene layer were shown to both increase
the detector photocurrent (by around 2 times, up to 2 · 103 A/ W
under a 10 V bias) and its response speed (signal rise time in
the order of 1.5 s) at a wavelength around 500 nm. The latter is
due to the proximity of the nanoparticles to the graphene layer,
which boosts the absorption in a region with the shortest carrier
extraction time.

B. Plasmonically Enhanced Waveguide Photodetectors

Waveguide type photodetectors are important components for
on-chip optical communication because they can be monolith-
ically integrated with electronics. Typical example of waveg-
uides used to guide light on a silicon chip are rectangular silicon
strips placed on an oxide layer. At the terminal end of such a
waveguide one could place a photodetector. The photodetector
is then an extension of the waveguide that comprises one of the
aforementioned photo detection schemes. Waveguide photode-
tectors can also be used to detect signals from an optical fiber
or free space, but that requires additional light coupling.

Optical communications rely on ultra-fast detectors with a
high responsivity. A plasmonic waveguide field enhanced photo-
conductive detector is depicted in Fig. 8, [73], [74]. Here, a sym-
metric metal-semiconductor-metal waveguide has been used to
enhance the field in the slot between the two metals. The MIM
plasmonic waveguide allows to confine the field in a narrow re-
gion, and thus decreases the absorber volume and accelerate the
carrier extraction. Due to the simple photoconductive structure
the detector is producible on a silicon substrate (Ge strips is
deposited directly on top of two Au lines/contacts forming the
waveguide/detector). The detector was demonstrated to have a
bandwidth beyond 100 GHz with responsivity of 0.38 A/W. It
works in the absorption band of Germanium at 1.3 μm.

Fig. 9. Schematic illustration of a plasmonic hot-carrier Schottky waveguide
photodetector on silicon. The detector demonstrated a responsivity of 0.12 A/W
and a bandwidth of 40 GHz. (See [28]).

Fig. 10. Schematic illustration of a plasmonic enhanced graphene photode-
tector. Upon reverse biasing a responsitivtiy of 0.37 A/W was measured at
wavelength of 1.55 μm. (See [75]).

Another ultra-fast photodetector approach relies on hot-
carrier photodetection [16], [27]. An optical communication
implementation is depicted in Fig. 9 [28]. It shows a MIM plas-
monic waveguide. The concept exploits the hot-carrier injection
in the metallic waveguides across the Schottky junction formed
by the silicon waveguide in the center and the titanium contact.
The plasmonic absorption and hot-carrier injection across the
75 nm wide dielectric layer guarantees a fast speed. A band-
width of 40 GHz and a responsivity of 0.12 A/W at 1.55 μm
was found when applying a bias voltage of 3.5 V.

Recently, graphen is increasingly used for photo detection. An
approach for a plasmonic hot-carrier waveguide photodetector
on silicon for the wavelength of 1.55 μm suggests to utilize a
metal-graphene-semiconductor stack to improve the efficiency
of the internal-photoemission [75]. The detector is depicted in
Fig. 10. In a latter publication [44] the role of graphene was ex-
plained in more detail. The authors show that the scheme allows
to enhance the efficiency of the internal photoemission due to a
prolonged carrier life-time in the graphene layer (comparing to
near-interface life-time without graphene), which increases the
possibility for carriers to be injected into silicon. The detector
reached a responsivity of 0.085 A/W at 1.55 μm telecom wave-
length. In another experiment - by reverse biasing the detector -
an avalanche photo multiplication effect was exploited leading
to a responsivity of 0.37 A/W at a wavelength 1.55 μm [75].

Most recently, new graphen photodetectors relying on a bolo-
metric thermal effect have emerged [76] and [77]. The plasmon-
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Fig. 11. Schematic illustration of a MIM hot-carrier plasmonic photodetector
for the visible to ultraviolet frequency range. The hot carriers generated in the top
metal grating are tunneling through a thin oxide layer creating a photocurrent.
(See [35]).

ically enhanced detectors have demonstrated operation at 100
Gbit/s with responsivities of 0.5 A/W at 1.55 μm [77].

C. Plasmonically Enhanced Grating Photodetectors

Plasmonic gratings are periodic metallic structures that sup-
port plasmonic modes propagating alongside its surface. Such
gratings can be used simultaneously as color-filters, electrical-
contacts and for field enhancement.

MIM hot-carrier tunneling photodetectors are among the sim-
plest detectors one can imagine. They can be fabricated by
thin-film deposition, which makes them compatible with mul-
tiple different technologies. The responsivity of MIM detectors
is however very low. To address the low responsivity utiliza-
tion of plasmonic grating field enhancement was suggested, see
Fig. 11, [35]. The detector in Fig. 11 shows a plasmonic grating
providing a highly concentrated field close to the oxide layer,
which enhances the hot-electron emission and therefore leads
to a higher tunneling photocurrent. The detector was shown
to work at around a 400 nm wavelength with a responsivity
reaching 0.25 mA/W. This is still a low responsivity, but it also
represents one of the most simple detector schemes.

A detector with a similar plasmonic grating to enhance the
field of a photoconductive silicon detector is depicted in Fig. 12,
see [78]. The detector exploits the efficient absorption of 400 nm
UV light in silicon. Light is then detected by means of the pho-
toconductive effect across the Al contacts. The detector utilizes
Al as plasmonic grating material, which possesses good optical
properties up to ultraviolet frequency range, and it also makes
the structure CMOS-compatible, which is important for large-
scale commercial applications [79]. A Schottky-junction forms
between the Al-Si contacts at the edge. This provides a carrier
accumulation effect that reduces the height of the barrier result-
ing in a photocurrent gain at lower signal rates (below 10 GHz).
With the photocurrent gain, the detector was measured to have
responsivity values above 10 A/W at optical frequencies around
400 nm.

Fig. 12. Schematic illustration of plasmonically enhanced photoconduc-
tive detector on silicon. Due to the charge accumulation at the Shottky-
contacts between Al and Si, the photodetector also provides photocurrent
gain. A responsivity of 10 A/W at wavelength of 400 nm was reported.
(See [78]).

Fig. 13. Schematic illustration of heterostructure QD-photodetector enhaced
by a plasmonic grating attached to the back-side. The illimunation is coming
from the substrate side. The detector reached responsivity of 1 A/W at wave-
length of 8 μm (See [80]).

To access new spectral wavelengths, it is most attractive to use
quantum dots (QDs) that are engineered to absorb at a particular
wavelength. A heterostructure photodetector with a multilayer
of QDs and a plasmonic grating for field enhancement is shown
in Fig. 13, see [80]. The grating was attached to one side of
the QD layers. A resonant enhancement of the photodetector
absorption due to the plasmonic grating by a factor 2 was found
experimentally. A responsivity of 1 A/W for light at 8 μm was
reported. More recently, an infrared camera was demonstrated
with this type of detector [81].

IV. A NANOWIRE ARRAY PLASMONIC PHOTODETECTOR

In the previous sections, we have shown a large variety of de-
tectors where plasmonics has been used to enhance the respon-
sivity or where plasmonics has been utilized to reach ultra-high
operation speed. However, the ultimate photodetector should
feature a combination of the following:

� A high responsivity (on the order of 1 A/W)
� A small footprint (a few μm2)
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Fig. 14. (a) Schematic illustration of the photodetector working principle:
electrons and holes are generated within a standard p-i-n structure. However by
means of light management the absoprtion is shifted towards the p-side yield-
ing UTC-like performance. (b) Scheme of the nanowire array photodiode with
assymetric carrier extraction paths: geometry on the nanowires provide assi-
metric extraction paths for electrons and holes compensating for their mobility
difference.

� Highest speed (>100 GHz)
� A low dark current
� Offer CMOS compatible fabrication
� A high input power dynamic range
Unfortunately – and despite of all efforts – such a photode-

tector is still at large.
In this section, we would like to look beyond of the current

technologies and introduce a visionary detector that combines
the field enhancement of plasmonics, the low dark-current of
a p-i-n structure, the high-speed of a UTC photodiode and of-
fers a silicon compatible growth of the emerging field of III-V
nanowires.

The operation scheme of the detector is depicted in Fig. 14(a).
The detector mainly comprises of a classical p-i-n structure
offering a low dark current. To reach high-speed performance
a resonator (in the form of a plasmonic structure) is introduced
to force the absorption close to the p-contact. This provides a
short drift path for the holes – similar to a UTC photodiode.

An implementation of the concept is suggested in Fig. 14(b)
and (c). The detector consists of an absorber in the form of a
III/V nanowire array. The array is sticking out of a gold contact,
which is separated from the substrate by an oxide layer. From
the bottom side the nanowires are contacted through n-type Si
to the titanium contact.

The detector offers a unique combination of advantages.
First, it features UTC-like performance. This is realized by a

Fig. 15. (a) Spectra calculated for nanowire arrays of different periodicities
(period Λ is shown on the graph) and heights of nanowire segments above the
gold contact (denoted as htop ). (b) Measured spectra of absorption of GaAs
naowire arrays grown on GaAs substrate and covered by 50 nm of gold through
a directional e-beam evaporation (period of each structure is marked by a dashed
line).

core-shell nanowire structure that extracts the electrons along
the wire to the n-type Si substrate whereas the holes are only
moving laterally to the nanowire-shell. The short path of the
holes with the lower mobility offers the speed-advantage of the
UTC concept. Second, the p-i-n structure featuring a low dark
current is formed by a p-type shell, an intrinsic core and a n-
type substrate. Third, high responsivity is reached due to the
gold contact that also acts as a plasmonic grating to enhance the
field within the nanowires and that prevents the light from leak-
ing into the substrate [82]–[84]. Forth, the small dimensions of
the nanowires allow to utilize high-quality III-V materials on sil-
icon which are known for the high detection performance. Last
but not least, III-V nanowires can be directly grown on a silicon
substrate with a minimal amount of structural defects due to a
small footprint and fast strain relaxation [85]–[88]. Therefore,
our detector will be compatible with the silicon platform.

To analyze the absorption of the photodetector we performed
several sets of simulations varying the structural parameters.
Fig. 15(a) shows a representative set. The simulations were
performed for array periods equal to 650, 700 and 750 nm
and nanowire heights above the contact layer (gold) from 90
to 150 nm. The rest of the parameters were: gold thickness
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−50 nm, total nanowire height −250 nm, nanowire shell radius
−120 nm, nanowire core radius−100 nm. Absorption is divided
into two parts: Absorption in GaAs (shown in different colors
for different structure periods) and absorption in the gold contact
(shown as dashed lines for all simulations).

One can see from Fig. 15(a) that the absorption in the metal
contact is close to negligible in all cases, so it is not considered
as an issue. Absorption in GaAs exhibits a sharp peak close to
the diffraction limit, which increases along with the increase
of the nanowire height above the gold contact. The dependence
of the absorption on the structure period (equal to the diffraction
limit in the air surroundings) indicates the presence of laterally
propagating modes within the top layer of the detector (above
the gold contact). The width of the absorption peak is relatively
narrow, and its central frequency can be tuned in a wide spectral
range by changing the periodicity of the nanowire array.

Carrier-dynamics simulations of the detector predict a
180 GHz bandwidth and a 0.3 A/W responsivity at around
750 nm wavelength as well as a tunability in the optical fre-
quency range.

To test the resonant behavior of the nanowire array we have
fabricated a wafer with arrays of GaAs nanowires grown on
a (111) GaAs substrate by selective area growth [89], [90].
Fig. 15(b) shows the absorption measurements of the fabricated
array. The position of the absorption peak follows the prediction
of the simulations while the resonance shape is deviating due to
the imperfections of the fabricated array. It is however evident
that laterally propagating modes predicted by the simulation are
present in the structure. In a next step of the development the
full detector structure may be realized on a silicon wafer.

V. CONCLUSION

We have shown in our review that plasmonics is an attractive
technique to enhance the responsivity of detectors that normally
would not be efficient because they rely on thin absorbers (such
as 2D-materials or thin QD-films) or because they operate at
a wavelength where absorption is inefficient. Along the same
lines, we have shown many examples where plasmonics has al-
lowed to shrink the device footprint, which is of high interest
in e.g., an expensive CMOS technology. Lastly, we have also
commented on first experiments that show ultra-fast responses
indicating that plasmonic concepts might offer a new path to-
wards compact high-speed detectors.

Finally, we have suggested a new scheme of a plasmonically
enhanced III-V nanowire array on silicon detector. The detector
potentially features the low dark current and high responsivity of
a p-i-n structure, the high-speed of a UTC photodiode combined
with the high crystalline quality and silicon compatibility of
III-V nanowires. It was predicted through numerical simulation
to reach 180 GHz bandwidth with responsivity of 0.3 A/W at
optical wavelengths (600–800 nm).
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