6 research outputs found

    Drosophila melanogaster linker histone dH1 is required for transposon silencing and to preserve genome integrity

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial LicenseHistone H1 is an intrinsic component of chromatin, whose important contribution to chromatin structure is well-established in vitro. Little is known, however, about its functional roles in vivo. Here, we have addressed this question in Drosophila, a model system offering many advantages since it contains a single dH1 variant. For this purpose, RNAi was used to efficiently deplete dH1 in flies. Expression-profiling showsthatdH1depletion affects expression of a relatively small number of genes in a regional manner. Furthermore, depletion up-regulates inactive genes, preferentially those located in heterochromatin, while active euchromatic genes are down-regulated, suggesting that the contribution of dH1 to transcription regulation is mainly structural, organizing chromatin for proper gene-expression regulation. Up-regulated genes are remarkably enriched in transposons. In particular, R1/R2 retrotransposons, which specifically integrate in the rDNA locus, are strongly up-regulated. Actually, depletion increases expression of transposon-inserted rDNA copies, resulting in synthesis of aberrant rRNAs and enlarged nucleolus. Concomitantly, dH1-depleted cells accumulate extra-chromosomal rDNA, show increased γH2Av content, stop proliferation and activate apoptosis, indicating that depletion causes genome instability and affects proliferation. Finally, the contributions to maintenance of genome integrity and cell proliferation appear conserved in human hH1s, as their expression rescues proliferation of dH1-depleted cells. © The Author(s) 2012. Published by Oxford University Press.MICINN (CSD2006-49 and BFU2009-07111); CSIC (200420E583 and 201120E001); Generalitat de Catalunya (SGR2009-1023); IRB fellowship (to O.V.). This work was carried out within the framework of the ‘Centre de Referència en Biotecnologia’ of the ‘Generalitat de Catalunya’. Funding for open access charge: MICINN.Peer Reviewe

    Lysine 27 dimethylation of Drosophila linker histone dH1 contributes to heterochromatin organization independently of H3K9 methylation

    Get PDF
    Post-translational modifications (PTMs) of core histones are important epigenetic determinants that correlate with functional chromatin states. However, despite multiple linker histone H1s PTMs have been identified, little is known about their genomic distribution and contribution to the epigenetic regulation of chromatin. Here, we address this question in Drosophila that encodes a single somatic linker histone, dH1. We previously reported that dH1 is dimethylated at K27 (dH1K27me2). Here, we show that dH1K27me2 is a major PTM of Drosophila heterochromatin. At mitosis, dH1K27me2 accumulates at pericentromeric heterochromatin, while, in interphase, it is also detected at intercalary heterochromatin. ChIPseq experiments show that >98% of dH1K27me2 enriched regions map to heterochromatic repetitive DNA elements, including transposable elements, simple DNA repeats and satellite DNAs. Moreover, expression of a mutated dH1K27A form, which impairs dH1K27me2, alters heterochromatin organization, upregulates expression of heterochromatic transposable elements and results in the accumulation of RNA:DNA hybrids (R-loops) in heterochromatin, without affecting H3K9 methylation and HP1a binding. The pattern of dH1K27me2 is H3K9 methylation independent, as it is equally detected in flies carrying a H3K9R mutation, and is not affected by depletion of Su(var)3–9, HP1a or Su(var)4–20. Altogether these results suggest that dH1K27me2 contributes to heterochromatin organization independently of H3K9 methylation.MICIN/AEI 10.13039/501100011033 [BFU2015-65082-P and PGC2018-094538-B-100]; ‘FEDER, una manera de hacer Europa’; Generalitat de Catalunya [SGR2014-204, SGR2017-475]; this work was carried out within the framework of the ‘Centre de Referencia en Biotecnologia’ of ` the Generalitat de Catalunya. Funding for open access charge: MINECO [PGC2018-094538-B-100]. Conflict of interest statement. None declared

    Functional analysis of Drosophila melanogaster linker histone dH1

    Get PDF
    We did functional characterisation of Drosophila melanogaster linker histone, dH1. In the mutant state for this protein, we observed structural changes in polytene chromosomes chromocenter and nucleoli of mutant larvae. In addition, we performed a microarray analysis in H1 mutant background in order to determine contribution of dH1 to gene expression regulation. We determined effects of dH1 loss in different types of chromatin and we identified groups of differentially expressed (DE) genes, groups in sense of physical clusters of genes and genomic elements rather than groups of functionally related genes. We found that dH1 affects in greater extent expression of heterochromatin genes compared to its effect on euchromatin genes; that dH1 regulates transcription in a regional manner, since the genes physically nearest to the most DE genes tend to be upregulated as well; and that dH1 is negatively regulating expression of transposable elements and members of certain gene families. In addition, we found that dH1 is necessary for preserving genome stability. Among DE transposable elements we detected R1 and R2 retrotransposons, elements that are integrating specifically in rRNA locus. We showed that activation of their transcription is also upregulating expression of aberrant, transposon-inserted, rDNA units of the locus. In this regard we observed an accumulation of extra-chromosomal rDNA circles, increased γ-H2Av content, stop in cell proliferation and activation of apoptosis. Altogether, these results are revealing so far unknown role of histone H1 in preserving genome stability and its effects on cell proliferation

    Functional analysis of drosophila melanogaster linker histone DH1

    No full text
    Peer Reviewe

    Functional analysis of Drosophila melanogaster linker histone dH1

    No full text
    We did functional characterisation of Drosophila melanogaster linker histone, dH1. In the mutant state for this protein, we observed structural changes in polytene chromosomes chromocenter and nucleoli of mutant larvae. In addition, we performed a microarray analysis in H1 mutant background in order to determine contribution of dH1 to gene expression regulation. We determined effects of dH1 loss in different types of chromatin and we identified groups of differentially expressed (DE) genes, groups in sense of physical clusters of genes and genomic elements rather than groups of functionally related genes. We found that dH1 affects in greater extent expression of heterochromatin genes compared to its effect on euchromatin genes; that dH1 regulates transcription in a regional manner, since the genes physically nearest to the most DE genes tend to be upregulated as well; and that dH1 is negatively regulating expression of transposable elements and members of certain gene families. In addition, we found that dH1 is necessary for preserving genome stability. Among DE transposable elements we detected R1 and R2 retrotransposons, elements that are integrating specifically in rRNA locus. We showed that activation of their transcription is also upregulating expression of aberrant, transposon-inserted, rDNA units of the locus. In this regard we observed an accumulation of extra-chromosomal rDNA circles, increased γ-H2Av content, stop in cell proliferation and activation of apoptosis. Altogether, these results are revealing so far unknown role of histone H1 in preserving genome stability and its effects on cell proliferation

    Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1

    No full text
    Linker histone H1 is a major chromatin component that binds internucleosomal DNA and mediates the folding of nucleosomes into a higher-order structure, namely the 30-nm chromatin fiber. Multiple post-translational modifications (PTMs) of core histones H2A, H2B, H3 and H4 have been identified and their important contribution to the regulation of chromatin structure and function is firmly established. In contrast, little is known about histone H1 modifications and their function. Here we address this question in Drosophila melanogaster, which, in contrast to most eukaryotic species, contains a single histone H1 variant, dH1. For this purpose, we combined bottom-up and top-down mass-spectrometry strategies. Our results indicated that dH1 is extensively modified by phosphorylation, methylation, acetylation and ubiquitination, with most PTMs falling in the N-terminal domain. Interestingly, several dH1 N-terminal modifications have also been reported in specific human and/or mouse H1 variants, suggesting that they have conserved functions. In this regard, we also provide evidence for the contribution of one of such conserved PTMs, dimethylation of K27, to heterochromatin organization during mitosis. Furthermore, our results also identified multiple dH1 isoforms carrying several phosphorylations and/or methylations, illustrating the high structural heterogeneity of dH1. In particular, we identified several non-CDK sites at the N-terminal domain that appear to be hierarchically phosphorylated. This study provides the most comprehensive PTM characterization of any histone H1 variant to date. © 2012 Elsevier B.V.This work was supported by grants from MICINN (CSD2006-49, BIO2008-00799 and BFU2009-07111), the CSIC (200420E391) and the “Generalitat de Catalunya” (SGR2009-1023 and SGR2009-1005). This work was carried out within the framework of the “Xarxa de Referència en Biotecnologia” of the “Generalitat de Catalunya”.Peer Reviewe
    corecore