9 research outputs found

    PCSK6 and Survival in Idiopathic Pulmonary Fibrosis

    Get PDF
    Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by limited treatment options and high mortality. A better understanding of the molecular drivers of IPF progression is needed. Objectives: To identify and validate molecular determinants of IPF survival. Methods: A staged genome-wide association study was performed using paired genomic and survival data. Stage I cases were drawn from centers across the United States and Europe and stage II cases from Vanderbilt University. Cox proportional hazards regression was used to identify gene variants associated with differential transplantation-free survival (TFS). Stage I variants with nominal significance (P < 5 x 10(-5)) were advanced for stage II testing and meta-analyzed to identify those reaching genome-wide significance (P < 5 x 10(-8)). Downstream analyses were performed for genes and proteins associated with variants reaching genome-wide significance. Measurements and Main Results: After quality controls, 1,481 stage I cases and 397 stage II cases were included in the analysis. After filtering, 9,075,629 variants were tested in stage I, with 158 meeting advancement criteria. Four variants associated with TFS with consistent effect direction were identified in stage II, including one in an intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) reaching genome-wide significance (hazard ratio, 4.11 [95% confidence interval, 2.54-6.67]; P = 9.45 x 10(-9)). PCSK6 protein was highly expressed in IPF lung parenchyma. PCSK6 lung staining intensity, peripheral blood gene expression, and plasma concentration were associated with reduced TFS. Conclusions: We identified four novel variants associated with IPF survival, including one in PCSK6 that reached genome-wide significance. Downstream analyses suggested that PCSK6 protein plays a potentially important role in IPF progression

    Circulating Plasma Biomarkers of Survival in Antifibrotic-Treated Patients With Idiopathic Pulmonary Fibrosis.

    No full text
    BackgroundA number of circulating plasma biomarkers have been shown to predict survival in patients with idiopathic pulmonary fibrosis (IPF), but most were identified before the use of antifibrotic (AF) therapy in this population. Because pirfenidone and nintedanib have been shown to slow IPF progression and may prolong survival, the role of such biomarkers in AF-treated patients is unclear.Research questionTo determine whether plasma concentration of cancer antigen 125 (CA-125), C-X-C motif chemokine 13 (CXCL13), matrix metalloproteinase 7 (MMP7), surfactant protein D (SP-D), chitinase-3-like protein-1 (YKL-40), vascular cell adhesion protein-1 (VCAM-1), and osteopontin (OPN) is associated with differential transplant-free survival (TFS) in AF-exposed and nonexposed patients with IPF.Study design and methodsA pooled, multicenter, propensity-matched analysis of IPF patients with and without AF exposure was performed. Optimal thresholds for biomarker dichotomization were identified in each group using iterative Cox regression. Longitudinal biomarker change was assessed in a subset of patients using linear mixed regression modeling. A clinical-molecular signature of IPF TFS was then derived and validated in an independent IPF cohort.ResultsThree hundred twenty-five patients were assessed, of which 68 AF-exposed and 172 nonexposed patients were included after propensity matching. CA-125, CXCL13, MMP7, YKL-40, and OPN predicted differential TFS in AF-exposed patients but at higher thresholds than in AF-nonexposed individuals. Plasma biomarker level generally increased over time in nonexposed patients but remained unchanged in AF-exposed patients. A clinical-molecular signature predicted decreased TFS in AF-exposed patients (hazard ratio [HR], 5.91; 95%&nbsp;CI, 2.25-15.5; P&nbsp;&lt; .001) and maintained this association in an independent AF-exposed cohort (HR, 3.97; 95%&nbsp;CI, 1.62-9.72; P&nbsp;= .003).InterpretationMost plasma biomarkers assessed predicted differential TFS in AF-exposed patients with IPF, but at higher thresholds than in nonexposed patients. A clinical-molecular signature of IPF TFS may provide a reliable predictor of outcome risk in AF-treated patients but requires additional research for optimization and validation
    corecore