148 research outputs found

    High sensitivity of one-step real-time reverse transcription quantitative PCR to detect low virus titers in large mosquito pools

    Get PDF
    Background: Mosquitoes are the deadliest animals in the world. Their ability to carry and spread diseases to humans causes millions of deaths every year. Due to the lack of efficient vaccines, the control of mosquito-borne diseases primarily relies on the management of the vector. Traditional control methods are insufficient to control mosquito populations. The sterile insect technique (SIT) is an additional control method that can be combined with other control tactics to suppress specific mosquito populations. The SIT requires the mass-rearing and release of sterile males with the aim to induce sterility in the wild female population. Samples collected from the environment for laboratory colonization, as well as the released males, should be free from mosquito-borne viruses (MBV). Therefore, efficient detection methods with defined detection limits for MBV are required. Although a one-step reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) method was developed to detect arboviruses in human and mosquito samples, its detection limit in mosquito samples has yet to be defined. Methods: We evaluated the detection sensitivity of one step RT-qPCR for targeted arboviruses in large mosquito pools, using pools of non-infected mosquitoes of various sizes (165, 320 and 1600 mosquitoes) containing one infected mosquito body with defined virus titers of chikungunya virus (CHIKV), usutu virus (USUV), West Nile virus (WNV) and Zika virus (ZIKV). Results: CHIK, USUV, ZIKV, and WNV virus were detected in all tested pools using the RT-qPCR assay. Moreover, in the largest mosquito pools (1600 mosquitoes), RT-qPCR was able to detect the targeted viruses using different total RNA quantities (10, 1 and 0.1 ng per reaction) as a template. Correlating the virus titer with the total RNA quantity allowed the prediction of the maximum number of mosquitoes per pool in which the RT-qPCR can theoretically detect the virus infection. Conclusions: Mosquito-borne viruses can be reliably detected by RT-qPCR assay in pools of mosquitoes exceeding 1000 specimens. This will represent an important step to expand pathogen-free colonies for mass-rearing sterile males for programmes that have a SIT component by reducing the time and the manpower needed to conduct this quality control process. Keywords: Arbovirus; Chikungunya virus (CHIKV); Flavivirus; Pool size; RT-qPCR; Usutu virus (USUV); West Nile virus (WNV); Zika virus (ZIKV).info:eu-repo/semantics/publishedVersio

    Irradiated Male Tsetse from a 40-Year-Old Colony Are Still Competitive in a Riparian Forest in Burkina Faso

    Get PDF
    Background Tsetse flies are the cyclical vectors of African trypanosomosis that constitute a major constraint to development in Africa. Their control is an important component of the integrated management of these diseases, and among the techniques available, the sterile insect technique (SIT) is the sole that is efficient at low densities. The government of Burkina Faso has embarked on a tsetse eradication programme in the framework of the PATTEC, where SIT is an important component. The project plans to use flies from a Glossina palpalis gambiensis colony that has been maintained for about 40 years at the Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES). It was thus necessary to test the competitiveness of the sterile males originating from this colony. Methodology/Principal Findings During the period January-February 2010, 16,000 sterile male G. p. gambiensis were released along a tributary of the Mouhoun river. The study revealed that with a mean sterile to wild male ratio of 1.16 (s.d. 0.38), the abortion rate of the wild female flies was significantly higher than before (p = 0.026) and after (p = 0.019) the release period. The estimated competitiveness of the sterile males (Fried index) was 0.07 (s.d. 0.02), indicating that a sterile to wild male ratio of 14.4 would be necessary to obtain nearly complete induced sterility in the female population. The aggregation patterns of sterile and wild male flies were similar. The survival rate of the released sterile male flies was similar to that observed in 1983-1985 for the same colony. Conclusions/Significance We conclude that gamma sterilised male G. p. gambiensis derived from the CIRDES colony have a competitiveness that is comparable to their competitiveness obtained 35 years ago and can still be used for an area-wide integrated pest management campaign with a sterile insect component in Burkina Faso. (Résumé d'auteur

    Contrasting Population Structures of Two Vectors of African Trypanosomoses in Burkina Faso: Consequences for Control

    Get PDF
    Tsetse flies are insects that transmit trypanosomes to humans (sleeping sickness) and animals (nagana). Controlling these vectors is a very efficient way to control these diseases. In Burkina Faso, a tsetse eradication campaign is presently targeting the northern part of the Mouhoun River Basin. To attain this objective, the approach has to be area-wide, i.e. the control effort targets an entire pest population within a circumscribed area. To assess the level of this isolation, we studied the genetic structure of Glossina palpalis gambiensis and Glossina tachinoides populations in the target area and in the adjacent river basins of the Comoé, the Niger and the Sissili River Basins. Our results suggest an absence of strong genetic isolation of the target populations. We therefore recommend establishing permanent buffer zones between the Mouhoun and the other river basin(s) to prevent reinvasion. This kind of study may be extended to other areas on other tsetse species

    Development and characterization of microsatellite markers for the tsetse species Glossina brevipalpis and preliminary population genetics analyses

    Get PDF
    Tsetse flies, the vectors of African trypanosomes are of key medical and economic importance and one of the constraints for the development of Africa. Tsetse fly control is one of the most effective and sustainable strategies used for controlling the disease. Knowledge about population structure and level of gene flow between neighbouring populations of the target vector is of high importance to develop appropriate strategies for implementing effective management programmes. Microsatellites are commonly used to identify population structure and assess dispersal of the target populations and have been developed for several tsetse species but were lacking for Glossina brevipalpis. In this study, we screened the genome of G. brevipalpis to search for suitable microsatellite markers and nine were found to be efficient enough to distinguish between different tsetse populations. The availability of these novel microsatellite loci will help to better understand the population biology of G. brevipalpis and to assess the level of gene flow between different populations. Such information will help with the development of appropriate strategies to implement the sterile insect technique (SIT) in the framework of an area-wide integrated pest management (AW-IPM) approach to manage tsetse populations and ultimately address the trypanosomoses problem in these targeted areas

    Tsetse Salivary Gland Hypertrophy Virus: Hope or Hindrance for Tsetse Control?

    Get PDF
    Many species of tsetse flies (Diptera: Glossinidae) are infected with a virus that causes salivary gland hypertrophy (SGH), and flies with SGH symptoms have a reduced fecundity and fertility. The prevalence of SGH in wild tsetse populations is usually very low (0.2%–5%), but higher prevalence rates (15.2%) have been observed occasionally. The successful eradication of a Glossina austeni population from Unguja Island (Zanzibar) using an area-wide integrated pest management approach with a sterile insect technique (SIT) component (1994–1997) encouraged several African countries, including Ethiopia, to incorporate the SIT in their national tsetse control programs. A large facility to produce tsetse flies for SIT application in Ethiopia was inaugurated in 2007. To support this project, a Glossina pallidipes colony originating from Ethiopia was successfully established in 1996, but later up to 85% of adult flies displayed symptoms of SGH. As a result, the colony declined and became extinct by 2002. The difficulties experienced with the rearing of G. pallidipes, epitomized by the collapse of the G. pallidipes colony originating from Ethiopia, prompted the urgent need to develop management strategies for the salivary gland hypertrophy virus (SGHV) for this species. As a first step to identify suitable management strategies, the virus isolated from G. pallidipes (GpSGHV) was recently sequenced and research was initiated on virus transmission and pathology. Different approaches to prevent virus replication and its horizontal transmission during blood feeding have been proposed. These include the use of antiviral drugs such as acyclovir and valacyclovir added to the blood for feeding or the use of antibodies against SGHV virion proteins. In addition, preliminary attempts to silence the expression of an essential viral protein using RNA interference will be discussed

    Concerns about the feasibility of using "precision guided sterile males" to control insects

    Get PDF
    International audienc

    Sterile Insect Technique (SIT) and Its Applications

    No full text
    Although most insect species have a beneficial role in the ecosystems, some of them represent major plant pests and disease vectors for livestock and humans. During the last six–seven decades, the sterile insect technique (SIT) has been used as part of area-wide integrated pest management strategies to suppress, contain, locally eradicate or prevent the (re)invasion of insect pest populations and disease vectors worldwide. This Special Issue on “Sterile insect technique (SIT) and its applications”, which consists of 27 manuscripts (7 reviews and 20 original research articles), provides an update on the research and development efforts in this area. The manuscripts report on all the different components of the SIT package including mass-rearing, development of genetic sexing strains, irradiation, quality control as well as field trials
    corecore