244 research outputs found

    Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies

    Get PDF
    We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.Comment: 53 pages, 23 figures, accepted for publication in Physical Review

    Monopole giant resonances and nuclear compressibility in relativistic mean field theory

    Full text link
    Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are described in the framework of time-dependent relativistic mean-field (RMF) theory. Excitation energies and the structure of eigenmodes are determined from a Fourier analysis of dynamical monopole moments and densities. The generator coordinate method, with generating functions that are solutions of constrained RMF calculations, is also used to calculate excitation energies and transition densities of giant monopole states. Calculations are performed with effective interactions which differ in their prediction of the nuclear matter compression modulus K_nm. Both time-dependent and constrained RMF results indicate that empirical GMR energies are best reproduced by an effective force with K_nm \approx 270 MeV.Comment: 30 pages of LaTeX, 18 PS-figure

    Configuration mixing of angular-momentum projected triaxial relativistic mean-field wave functions

    Get PDF
    The framework of relativistic energy density functionals is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum projected wave functions, generated by constrained self-consistent relativistic mean-field calculations for triaxial shapes. The effects of triaxial deformation and of KK-mixing is illustrated in a study of spectroscopic properties of low-spin states in 24^{24}Mg.Comment: 15 pages, 11 figures, 4 tables, accepted for publication in Phys. Rev.

    The effective force NL3 revisited

    Full text link
    Covariant density functional theory based on the relativistic mean field (RMF) Lagrangian with the parameter set NL3 has been used in the last ten years with great success. Now we propose a modification of this parameter set, which improves the description of the ground state properties of many nuclei and simultaneously provides an excellent description of excited states with collective character in spherical as well as in deformed nuclei.Comment: 8 pages, 5 figure

    Beyond the relativistic mean-field approximation (II): configuration mixing of mean-field wave functions projected on angular momentum and particle number

    Get PDF
    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field + Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ\delta-interaction in the pairing channel. Illustrative calculations are performed for 24^{24}Mg, 32^{32}S and 36^{36}Ar, and compared with results obtained employing the model developed in the first part of this work, i.e. without particle-number projection, as well as with the corresponding non-relativistic models based on Skyrme and Gogny effective interactions.Comment: 37 pages, 10 figures, submitted to Physical Review

    Beyond the relativistic mean-field approximation: configuration mixing of angular momentum projected wave functions

    Get PDF
    We report the first study of restoration of rotational symmetry and fluctuations of the quadrupole deformation in the framework of relativistic mean-field models. A model is developed which uses the generator coordinate method to perform configuration mixing calculations of angular momentum projected wave functions, calculated in a relativistic point-coupling model. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the constrained relativistic mean-field + BCS equations in an axially deformed oscillator basis. A number of illustrative calculations are performed for the nuclei 194Hg and 32Mg, in comparison with results obtained in non-relativistic models based on Skyrme and Gogny effective interactions.Comment: 32 pages, 14 figures, submitted to Phys. Rev.

    Low-energy monopole strength in exotic Nickel isotopes

    Get PDF
    Low-energy strength is predicted for the isoscalar monopole response of neutron-rich Ni isotopes, in calculations performed using the microscopic Skyrme HF+RPA and relativistic RHB+RQRPA models. Both models, although based on different energy density functionals, predict the occurrence of pronounced monopole states in the energy region between 10 MeV and 15 MeV, well separated from the isoscalar GMR. The analysis of transition densities and corresponding particle-hole configurations shows that these states represent almost pure neutron single hole-particle excitations. Even though their location is not modified with respect to the corresponding unperturbed states, their (Q)RPA strength is considerably enhanced by the residual interaction. The theoretical analysis predicts the gradual enhancement of low-energy monopole strength with neutron excess.Comment: 4 pages, 6 figures, submitted to Physical Review

    Relativistic Hartree-Bogoliubov description of sizes and shapes of A=20 isobars

    Get PDF
    Ground-state properties of A = 20 nuclei (20^{20}N, 20^{20}O, 20^{20}F, 20^{20}Ne, 20^{20}Na, 20^{20}Mg) are described in the framework of Relativistic Hartree-Bogoliubov (RHB) theory. The model uses the NL3 effective interaction in the mean-field Lagrangian, and describes pairing correlations by the pairing part of the finite range Gogny interaction D1S. Binding energies, quadrupole deformations, nuclear matter radii, and differences in radii of proton and neutron distributions are compared with recent experimental data.Comment: LaTeX 11 pages, 6 eps figs, submitted to Nucl. Phys.

    Collective excitations in the Unitary Correlation Operator Method and relativistic QRPA studies of exotic nuclei

    Full text link
    The collective excitation phenomena in atomic nuclei are studied in two different formulations of the Random Phase Approximation (RPA): (i) RPA based on correlated realistic nucleon-nucleon interactions constructed within the Unitary Correlation Operator Method (UCOM), and (ii) relativistic RPA (RRPA) derived from effective Lagrangians with density-dependent meson-exchange interactions. The former includes the dominant interaction-induced short-range central and tensor correlations by means of an unitary transformation. It is shown that UCOM-RPA correlations induced by collective nuclear vibrations recover a part of the residual long-range correlations that are not explicitly included in the UCOM Hartree-Fock ground state. Both RPA models are employed in studies of the isoscalar monopole resonance (ISGMR) in closed-shell nuclei across the nuclide chart, with an emphasis on the sensitivity of its properties on the constraints for the range of the UCOM correlation functions. Within the Relativistic Quasiparticle RPA (RQRPA) based on Relativistic Hartree-Bogoliubov model, the occurrence of pronounced low-lying dipole excitations is predicted in nuclei towards the proton drip-line. From the analysis of the transition densities and the structure of the RQRPA amplitudes, it is shown that these states correspond to the proton pygmy dipole resonance.Comment: 15 pages, 4 figures, submitted to Physics of Atomic Nuclei, conference proceedings, "Frontiers in the Physics of Nucleus", St. Petersburg, 28. June-1. July, 200
    corecore