60 research outputs found

    Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway

    Get PDF
    In contrast to molecular chaperones that couple protein folding to ATP hydrolysis, protein disulfide-isomerase (PDI) catalyzes protein folding coupled to formation of disulfide bonds (oxidative folding). However, we do not know how PDI distinguishes folded, partly-folded and unfolded protein substrates. As a model intermediate in an oxidative folding pathway, we prepared a two-disulfide mutant of basic pancreatic trypsin inhibitor (BPTI) and showed by NMR that it is partly-folded and highly dynamic. NMR studies show that it binds to PDI at the same site that binds peptide ligands, with rapid binding and dissociation kinetics; surface plasmon resonance shows its interaction with PDI has a Kd of ca. 10−5 M. For comparison, we characterized the interactions of PDI with native BPTI and fully-unfolded BPTI. Interestingly, PDI does bind native BPTI, but binding is quantitatively weaker than with partly-folded and unfolded BPTI. Hence PDI recognizes and binds substrates via permanently or transiently unfolded regions. This is the first study of PDI's interaction with a partly-folded protein, and the first to analyze this folding catalyst's changing interactions with substrates along an oxidative folding pathway. We have identified key features that make PDI an effective catalyst of oxidative protein folding – differential affinity, rapid ligand exchange and conformational flexibility

    Agalsidase beta treatment is associated with improved quality of life in patients with Fabry disease: Findings from the Fabry Registry

    Get PDF
    Purpose: To evaluate the effect of agalsidase beta on longitudinal health-related quality of life in patients with Fabry disease. Methods: the SF-36 (R) Health Survey was used to measure health-related quality of life in Fabry Registry patients. Seventy-one men and 59 women who were treated with agalsidase beta (median dose: 1.0 mg/kg/2 weeks) and who had baseline and at least 2 yearly posttreatment health-related quality of life measurements were included in these analyses. A repeated measures model was used to analyze change in score from baseline. Results: Men improved in the physical component summary and in all eight scales of the SF-36 after 1 and 2 years and in the mental component summary after 1 year of agalsidase beta treatment (P < 0.05). Women improved in the mental component summary and in six of the eight scales after 1 and/or 2 years of treatment. Patients whose baseline SF-36 scores were below the median showed the greatest improvements. These responses were comparable with or greater than the published effects of various treatments for multiple sclerosis, rheumatoid arthritis, central neuropathic pain, and Gaucher disease. Conclusion: Long-term treatment with agalsidase beta resulted in substantial improvements in health-related quality of life in both men and women; the effect was more pronounced in men. Genet Med 2010:12(11):703 712.Genzyme CorporationGenzymeNatl Univ Hosp, Dept Endocrinol, DK-2100 Copenhagen, DenmarkSan Bassano Hosp, Dept Neurol, Bassano Del Grappa, ItalyUniv Padua, Dept Neurosci, Padua, ItalyUniv Wurzburg, Dept Med, Wurzburg, GermanyColumbia Univ, Dept Pediat, Div Clin Genet, Coll Phys & Surg, New York, NY 10027 USACincinnati Childrens Hosp, Div Human Genet, Cincinnati, OH USAUniversidade Federal de São Paulo, Inatos Metab CREIM, São Paulo, BrazilMassachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USAGenzyme Corp, Dept Biomed Data Sci & Informat, Cambridge, MA USAUniversidade Federal de São Paulo, Inatos Metab CREIM, São Paulo, BrazilWeb of Scienc

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed

    A target-protection mechanism of antibiotic resistance at atomic resolution: insights into FusB-type fusidic acid resistance

    Get PDF
    Antibiotic resistance in clinically important bacteria can be mediated by proteins that physically associate with the drug target and act to protect it from the inhibitory effects of an antibiotic. We present here the first detailed structural characterization of such a target protection mechanism mediated through a protein-protein interaction, revealing the architecture of the complex formed between the FusB fusidic acid resistance protein and the drug target (EF-G) it acts to protect. Binding of FusB to EF G induces conformational and dynamic changes in the latter, shedding light on the molecular mechanism of fusidic acid resistance
    corecore