291 research outputs found
County-Specific Net Migration by Five-Year Age Groups, Hispanic Origin, Race and Sex 2000-2010
This report documents the methodology used to prepare county-level, net migration estimates by five-year age cohorts and sex, and by race and Hispanic origin, for the intercensal period from 2000 to 2010. The estimates were prepared using a vital statistics version of the forward cohort residual method (Siegel and Hamilton 1952) following the techniques used to prepare the 1990 to 2000 net migration estimates (Voss, McNiven, Johnson, Hammer, and Fuguitt 2004) as described in detail below. These numbers (and the net migration rates derivable from them) extend the set of decennial estimates of net migration that have been produced following each decennial census beginning with 1960 (net migration for the 1950s: Bowles and Tarver, 1965; 1960s: Bowles, Beale and Lee, 1975; 1970s: White, Mueser and Tierney, 1987; 1980s: Fuguitt, Beale, and Voss 2010; and 1990s: Voss, McNiven, Hammer, Johnson and Fuguitt, 2004)
The role of seawater constituents in light backscattering in the ocean
The significance of light backscattering in the ocean is wide ranging, especially in optical remote sensing. However, the complexity of natural seawater as an optical medium often obscures the measured optical signals to the point that our present-day interpretation and detailed understanding of major sources of backscattering and its variability in the ocean are uncertain and controversial. Here we review the roles played by various seawater constituents in light backscattering and we address a question of \u27missing\u27 backscattering. Historically, this question has resulted from a hypothesis that under non-bloom conditions in the open ocean, phytoplankton make a significantly smaller contribution to the particulate backscattering coefficient than to the particulate (total) scattering coefficient. By discussing the backscattering properties and potential contributions of the various water constituents (colloids, bacteria, phytoplankton, biogenic detritus, minerogenic particles, bubbles), we show that due to substantial variability in water composition, different types of constituents can explain the \u27missing\u27 backscattering. Under typical non-bloom conditions in the open ocean, the small-sized non-living particles appear to be the most important because of their high abundance relative to other particle types. These particles are believed to be primarily of organic origin but an important role of minerogenic particles cannot be excluded. Still, in the very clear ocean water the backscattering by water molecules themselves can contribute as much as 80% to the total backscattering coefficient in the blue spectral region. The general scenario of the dominance of molecules and small-sized particles can, however, be readily perturbed due to changes in local conditions. For example, bubbles entrained by breaking waves can intermittently dominate the backscattering at shallow depths below the sea surface, the calcifying phytoplankton (coccolithophores) producing calcite scales of high refractive index can dominate if present in sufficient concentration, and other plankton species can dominate during blooms. The role of phytoplankton could be generally greater than commonly assumed given the fact that real cells backscatter more light than predicted from homogeneous sphere models. In addition, high refractive index mineral particles can dominate in many coastal areas, and perhaps also in some open ocean areas during events of atmospheric dust deposition. It is likely that the different scenarios are quite widespread and frequent. Further improvements in quantitative understanding of the variability in light backscattering and its sources require an increased effort in basic research to better characterize the optical properties of the various seawater constituents and the variability in the detailed composition of seawater. Seawater is a complex optical medium containing a great variety of particle types and soluble species that vary in concentration and composition with time and location in the ocean, so ocean optics science must progress beyond the traditional overly simplified description, which has been based only on a few constituent categories defined broadly as molecular water, suspended particles (phytoplankton and non-algal particles), and dissolved organic matter. © 2004 Elsevier Ltd. All rights reserved
Recommended from our members
Toward closure of the inherent optical properties of natural waters
A fundamental relationship of inherent optical properties (IOP) is that the
beam attenuation coefficient is the sum of the volume absorption and scattering
coefficients (c = a + b). A relative calibration of a set of instruments can be provided
using this IOP closure equation. Measurement of the true beam attenuation coefficient
c is not practical as all attenuation instrumentation has some finite acceptance angle in
which scattered light is collected. We provide a theoretical framework for measuring
the attenuation and scattering coefficients in a consistent manner. Using this
framework, we provide a practical version of the IOP closure equation. We apply the
practical IOP closure equation to measurements made at Lake Pend Oreille, Idaho, in
the spring of 1992. Results of this IOP closure indicate that the practical closure
equation is a useful approach. Closure was achieved during some measurement sets but
not at others. The intermittent lack of closure may be due to the method of
determining the scattering coefficient from the general angle scattering meter or that the
calibration of at least one of the instruments drifted during the time of the experiment
Clear-sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements
We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (λ=380â1060 nm) is 3â8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10â17% at λ=525 nm), but these differences are within the combined error bars of the measurements and computations
Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV
The effects of the final state interaction phenomenon known as colour
reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~
189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to
affect observables based on charged particles in hadronic decays of W+W-.
Measurements of inclusive charged particle multiplicities, and of their angular
distribution with respect to the four jet axes of the events, are used to test
models of colour reconnection. The data are found to exclude extreme scenarios
of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other
models, both with and without colour reconnection effects. In the context of
the SK-I model, the best agreement with data is obtained for a reconnection
probability of 37%. Assuming no colour reconnection, the charged particle
multiplicity in hadronically decaying W bosons is measured to be (nqqch) =
19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.
Search for the Standard Model Higgs Boson with the OPAL Detector at LEP
This paper summarises the search for the Standard Model Higgs boson in e+e-
collisions at centre-of-mass energies up to 209 GeV performed by the OPAL
Collaboration at LEP. The consistency of the data with the background
hypothesis and various Higgs boson mass hypotheses is examined. No indication
of a signal is found in the data and a lower bound of 112.7GeV/C^2 is obtained
on the mass of the Standard Model Higgs boson at the 95% CL.Comment: 51 pages, 21 figure
The Status Of Two New England âEndemicâ Carices: Carex Elachycarpa And C. Josselynii (Cyperaceae)
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149729/1/tax00494.pd
Search for R-Parity Violating Decays of Scalar Fermions at LEP
A search for pair-produced scalar fermions under the assumption that R-parity
is not conserved has been performed using data collected with the OPAL detector
at LEP. The data samples analysed correspond to an integrated luminosity of
about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An
important consequence of R-parity violation is that the lightest supersymmetric
particle is expected to be unstable. Searches of R-parity violating decays of
charged sleptons, sneutrinos and squarks have been performed under the
assumptions that the lightest supersymmetric particle decays promptly and that
only one of the R-parity violating couplings is dominant for each of the decay
modes considered. Such processes would yield final states consisting of
leptons, jets, or both with or without missing energy. No significant
single-like excess of events has been observed with respect to the Standard
Model expectations. Limits on the production cross- section of scalar fermions
in R-parity violating scenarios are obtained. Constraints on the supersymmetric
particle masses are also presented in an R-parity violating framework analogous
to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.
Search for Higgs Bosons in e+e- Collisions at 183 GeV
The data collected by the OPAL experiment at sqrts=183 GeV were used to
search for Higgs bosons which are predicted by the Standard Model and various
extensions, such as general models with two Higgs field doublets and the
Minimal Supersymmetric Standard Model (MSSM). The data correspond to an
integrated luminosity of approximately 54pb-1. None of the searches for neutral
and charged Higgs bosons have revealed an excess of events beyond the expected
background. This negative outcome, in combination with similar results from
searches at lower energies, leads to new limits for the Higgs boson masses and
other model parameters. In particular, the 95% confidence level lower limit for
the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons
can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA >
72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and
soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for
minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM
parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European
Physical Journal
- âŠ