108 research outputs found

    Heterogeneous Catalysis to Drive the Waste-to-Pharma Concept: From Furanics to Active Pharmaceutical Ingredients

    Get PDF
    A perspective on the use of heterogeneous catalysis to drive the waste-to-pharma concept is provided in this contribution based on the conversion of furanics to active pharmaceutical ingredients (APIs). The provided overview of the concept in this perspective article has been exemplified for two key molecule examples: Ancarolol and Furosemide

    Annelated medium-sized azaheterocycles as attractive scaffolds for CNS targeted leads.

    Get PDF
    Medium-sized nitrogen heterocycles (7-to-15-membered) have widespread interest in organic synthesis and medicinal chemistry. Indeed, such heterocyclic rings are found as subunits or core structures in natural and bioactive molecules, including pharmaceutical products, whereas on the other hand they often can serve as key intermediates in the synthesis of bicyclic compounds by selective transformations (e.g., transannular ring-contractions, cycloadditions). These molecular frameworks, particularly annelated 7-to-10-membered aza-heterocycles, have long drawn our attention as potential scaffolds for developing new multitarget- directed ligands (MTDLs) for treating Alzheimer's disease (AD) and other neurodegenerative syndromes.AD, the most common form of dementia affecting people worldwide, is a progressive neurodegenerative disorder, whose multifactorial pathogenesis is still not completely understood. The main histopathological changes include synaptic dysfunction and neuronal loss resulting from intracellular and extracellular fibrillar aggregates of Beta-amyloid (Abeta),hyperphosphorilated and beta-folded tau proteins, cholinergic impairment, oxidative stress, neuroinflammation, metal dys-homeostasis and mitochondrial damage. Among others, N- methyl-D-aspartate receptors (NMDARs) play a major role in learning and memory, and their overactivation causes excessive calcium influx and consequent excitotoxicity, which is associated with CNS diseases, including Parkinson's disease. Starting from our old1,2 and recent 3 findings on the suitability of partially hydrogenated benzo-, chromane-4- one- and indole-fused azepine and azocine derivatives targeted at enzymes, receptors and biochemical pathways involved in the pathogenesis of AD, we extended the investigation to novel derivatives of annelated azonines and azecines. Herein, our recent advances of benzo- and indol-fused 7-to-10-membered nitrogen heterocycles as molecular tools for AD-associated targets (e.g., butyryl- and acetylcholinesterase, monoamine oxidases A and B, Abeta aggregation, ROS insult, NMDAR antagonist), along with the results from investigation on cell and ex vivo/in vivo animal models, will be presented and discussed in an effort of rationalizing structure-activity relationships and progressing drug optimization of the examined CNS-targeted lead compounds

    Synthesis of 8-phenyl substituted 3-benzazecines with allene moiety, their thermal rearrangement and evaluation as acetylcholinesterase inhibitors

    Get PDF
    Various 4′-R-substituted phenyl azacyclic allenes were synthesized in good yields, and their thermal transformations were studied. For the first time, the obtained rearrangement products—new N-bridged cyclopenta[a]indenes, and the corresponding parent allenes were evaluated as potential inhibitors of acetyl- and butyrylcholinesterase. Among the tested compounds, the allene derivative 2g proved to competitively inhibit human AChE with inhibition constant value (Ki) in the low micromolar range. Graphic abstract: [Figure not available: see fulltext.

    Homobivalent Lamellarin-Like Schiff Bases: In Vitro Evaluation of Their Cancer Cell Cytotoxicity and Multitargeting Anti-Alzheimer's Disease Potential

    Get PDF
    Marine alkaloids belonging to the lamellarins family, which incorporate a 5,6-dihydro-1-phenylpyrrolo[2,1-a]isoquinoline (DHPPIQ) moiety, possess various biological activities, spanning from antiviral and antibiotic activities to cytotoxicity against tumor cells and the reversal of multidrug resistance. Expanding a series of previously reported imino adducts of DHPPIQ 2-carbaldehyde, novel aliphatic and aromatic Schiff bases were synthesized and evaluated herein for their cytotoxicity in five diverse tumor cell lines. Most of the newly synthesized compounds were found noncytotoxic in the low micromolar range (<30 μM). Based on a Multi-fingerprint Similarity Search aLgorithm (MuSSeL), mainly conceived for making protein drug target prediction, some DHPPIQ derivatives, especially bis-DHPPIQ Schiff bases linked by a phenylene bridge, were prioritized as potential hits addressing Alzheimer's disease-related target proteins, such as cholinesterases (ChEs) and monoamine oxidases (MAOs). In agreement with MuSSeL predictions, homobivalent para-phenylene DHPPIQ Schiff base 14 exhibited a noncompetitive/mixed inhibition of human acetylcholinesterase (AChE) with Ki in the low micromolar range (4.69 μM). Interestingly, besides a certain inhibition of MAO A (50% inhibition of the cell population growth (IC50) = 12 μM), the bis-DHPPIQ 14 showed a good inhibitory activity on self-induced β-amyloid (Aβ)1-40 aggregation (IC50 = 13 μM), which resulted 3.5-fold stronger than the respective mono-DHPPIQ Schiff base 9

    1-Methyl-3-(2-oxo-2H-chromen-3-yl)-1H-imidazol-3-ium picrate

    No full text
    The title salt, C13H11N2O2+·C6H2N3O7−, is the unexpected product of a domino reaction of 3-cyanomethyl-1-methylimidazolium chloride with salicylic aldehyde in the presence of picric acid. In the cation, the 1H-imidazole ring is twisted by 63.2 (1)° from the 2H-chromen plane. In the crystal, cations and anions are alternately stacked along the a axis through π–π stacking interactions between the almost parallel aromatic rings [centroid–centroid distances = 3.458 (2) and 3.678 (2) Å]. The stacks are further linked by C—H...O hydrogen bonds into a two-tier layer parallel to (001)

    Visible light-mediated chemistry of indoles and related heterocycles

    No full text
    The use of visible light and photoredox catalysis emerged as a powerful and sustainable tool for organic synthesis, showing the high value of distinctly different ways of bond creation. Indoles and related heterocycles are widely-present in natural products, biologically active compounds, drugs, and agrochemicals. This review summarises the impact of visible light-promoted chemistry on the functionalization of indoles and on the synthesis and modification of indolines, indolin-2-ones, indolin-3-ones, and isatins. Almost 100 references starting from 2012 are cited.status: publishe

    A novel alkyne-induced recyclization of 4-hydroxymethyl or 4-formyl-1H-2,3-dihydroisoindoles-an effective pathway to substituted isobenzofurans

    No full text
    2-Alkyl or 2-benzyl-substituted 4-hydroxymethyl(formyl)isoindoles readily react with electron-deficient alkynes undergoing intramolecular cyclization to produce 1-aminomethyl-substituted isobenzofurans in good yields. © 2009 Elsevier Ltd. All rights reserved
    corecore