133 research outputs found

    Екологічний зміст зоологічної номенклатури: проблема тлумачення

    Get PDF
    It is demonstrated on a material of different animal groups that many taxonomical names hold some ecological information on its objects. Four grammatical modes are discerned on designating of habitat. Actuality of special analysis of taxonomical names sense is emphasized. The concept of Nomenclatural Latin is proposed.На матеріалі різних груп тварин показано, що багато таксономічних назв містять певну характеристичну інформацію (зокрема екологічну) про свій об’єкт. На відображення середовища існування виділено чотири граматичних способи (кореневий, суфіксальний, префіксальний, відмінковий). Оскільки цими ж способами утворюються й таксономічні назви на відображення інших співвідношень (спорідненість, схожість, тощо), обґрунтовується важливість спеціального аналізу змістовності номенклатури. Вводиться поняття номенклатурної латини. На матеріалі різних груп тварин показано, що багато таксономічних назв містять певну характеристичну інформацію (зокрема екологічну) про свій об’єкт. На відображення середовища існування виділено чотири граматичних способи (кореневий, суфіксальний, префіксальний, відмінковий). Оскільки цими ж способами утворюються й таксономічні назви на відображення інших співвідношень (спорідненість, схожість, тощо), обґрунтовується важливість спеціального аналізу змістовності номенклатури. Вводиться поняття номенклатурної латини.

    Calcium and copper transport ATPases: analogies and diversities in transduction and signaling mechanisms

    Get PDF
    The calcium transport ATPase and the copper transport ATPase are members of the P-ATPase family and retain an analogous catalytic mechanism for ATP utilization, including intermediate phosphoryl transfer to a conserved aspartyl residue, vectorial displacement of bound cation, and final hydrolytic cleavage of Pi. Both ATPases undergo protein conformational changes concomitant with catalytic events. Yet, the two ATPases are prototypes of different features with regard to transduction and signaling mechanisms. The calcium ATPase resides stably on membranes delimiting cellular compartments, acquires free Ca2+ with high affinity on one side of the membrane, and releases the bound Ca2+ on the other side of the membrane to yield a high free Ca2+ gradient. These features are a basic requirement for cellular Ca2+ signaling mechanisms. On the other hand, the copper ATPase acquires copper through exchange with donor proteins, and undergoes intracellular trafficking to deliver copper to acceptor proteins. In addition to the cation transport site and the conserved aspartate undergoing catalytic phosphorylation, the copper ATPase has copper binding regulatory sites on a unique N-terminal protein extension, and has also serine residues undergoing kinase assisted phosphorylation. These additional features are involved in the mechanism of copper ATPase intracellular trafficking which is required to deliver copper to plasma membranes for extrusion, and to the trans-Golgi network for incorporation into metalloproteins. Isoform specific glyocosylation contributes to stabilization of ATP7A copper ATPase in plasma membranes

    Activation of Fas/FasL pathway and the role of c-FLIP in primary culture of human cholangiocarcinoma cells

    Get PDF
    Intrahepatic cholangiocarcinoma (iCCA) represents a heterogeneous group of malignancies emerging from the biliary tree, often in the context of chronic bile ducts inflammation. The immunological features of iCCA cells and their capability to control the lymphocytes response have not yet been investigated. The aims of the present study were to evaluate the interaction between iCCA cells and human peripheral blood mononuclear cells (PBMCs) and the role of Fas/FasL in modulating T-cells and NK-cells response after direct co-culture. iCCA cells express high levels of Fas and FasL that increase after co-culture with PBMCs inducing apoptosis in CD4(+), CD8(+) T-cells and in CD56(+) NK-cells. In vitro, c-FLIP is expressed in iCCA cells and the co-culture with PBMCs induces an increase of c-FLIP in both iCCA cells and biliary tree stem cells. This c-FLIP increase does not trigger the caspase cascade, thus hindering apoptotis of iCCA cells which, instead, underwent proliferation. The increased expression of Fas, FasL and c-FLIP is confirmed in situ, in human CCA and in primary sclerosing cholangitis. In conclusion our data indicated that iCCA cells have immune-modulatory properties by which they induce apoptosis of T and NK cells, via Fas/FasL pathway, and escape inflammatory response by up-regulating c-FLIP system

    Perforin Rapidly Induces Plasma Membrane Phospholipid Flip-Flop

    Get PDF
    The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes) from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN) and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm) when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB) treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells

    An A91V SNP in the perforin gene is frequently found in NK/T-cell lymphomas

    Get PDF
    NK/T-cell lymphoma (NKTCL) is the most frequent EBV-related NK/T-cell disease. Its clinical manifestations overlap with those of familial haemophagocytic lymphohistiocytosis (FHLH). Since PERFORIN (PRF1) mutations are present in FHLH, we analysed its role in a series of 12 nasal and 12 extranasal-NKTCLs. 12.5% of the tumours and 25% of the nasal-origin cases had the well-known g.272C>T(p.Ala91Val) pathogenic SNP, which confers a poor prognosis. Two of these cases had a double-CD4/CD8-positive immunophenotype, although no correlation was found with perforin protein expression. p53 was overexpressed in 20% of the tumoral samples, 80% of which were of extranasal origin, while none showed PRF1 SNVs. These results suggest that nasal and extranasal NKTCLs have different biological backgrounds, although this requires validation

    Measuring kinetic drivers of pneumolysin pore structure

    Get PDF
    Most membrane attack complex-perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins are thought to form pores in target membranes by assembling into pre-pore oligomers before undergoing a pre-pore to pore transition. Assembly during pore formation is into both full rings of subunits and incomplete rings (arcs). The balance between arcs and full rings is determined by a mechanism dependent on protein concentration in which arc pores arise due to kinetic trapping of the pre-pore forms by the depletion of free protein subunits during oligomerisation. Here we describe the use of a kinetic assay to study pore formation in red blood cells by the MACPF/CDC pneumolysin from Streptococcus pneumoniae. We show that cell lysis displays two kinds of dependence on protein concentration. At lower concentrations it is dependent on the pre-pore topore transition of arc oligomers, which we show to be a cooperative process. At higher concentrations it is dependent on the amount of pneumolysin bound to the membrane and reflects the affinity of the protein for its receptor, cholesterol. A lag occurs before cell lysis begins; this is dependent on oligomerisation of pneumolysin. Kinetic dissection of cell lysis by pneumolysin demonstrates the capacity of MACPF/CDCs to generate pore-forming oligomericstructures of variable size with, most likely, different functional roles in biology

    Caspase-Dependent Inhibition of Mousepox Replication by gzmB

    Get PDF
    BACKGROUND: Ectromelia virus is a natural mouse pathogen, causing mousepox. The cytotoxic T (Tc) cell granule serine-protease, granzyme B, is important for its control, but the underlying mechanism is unknown. Using ex vivo virus immune Tc cells, we have previously shown that granzyme B is able to activate several independent pro-apoptotic pathways, including those mediated by Bid/Bak/Bax and caspases-3/-7, in target cells pulsed with Tc cell determinants. METHODS AND FINDINGS: Here we analysed the physiological relevance of those pro-apoptotic pathways in ectromelia infection, by incubating ectromelia-immune ex vivo Tc cells from granzyme A deficient (GzmB(+) Tc cells) or granzyme A and granzyme B deficient (GzmAxB(-/-) Tc cell) mice with ectromelia-infected target cells. We found that gzmB-induced apoptosis was totally blocked in ectromelia infected or peptide pulsed cells lacking caspases-3/-7. However ectromelia inhibited only partially apoptosis in cells deficient for Bid/Bak/Bax and not at all when both pathways were operative suggesting that the virus is able to interfere with apoptosis induced by gzmB in case not all pathways are activated. Importantly, inhibition of viral replication in vitro, as seen with wild type cells, was not affected by the lack of Bid/Bak/Bax but was significantly reduced in caspase-3/-7-deficient cells. Both caspase dependent processes were strictly dependent on gzmB, since Tc cells, lacking both gzms, neither induced apoptosis nor reduced viral titers. SIGNIFICANCE: Out findings present the first evidence on the biological importance of the independent gzmB-inducible pro-apoptotic pathways in a physiological relevant virus infection model

    An early history of T cell-mediated cytotoxicity.

    Get PDF
    After 60 years of intense fundamental research into T cell-mediated cytotoxicity, we have gained a detailed knowledge of the cells involved, specific recognition mechanisms and post-recognition perforin-granzyme-based and FAS-based molecular mechanisms. What could not be anticipated at the outset was how discovery of the mechanisms regulating the activation and function of cytotoxic T cells would lead to new developments in cancer immunotherapy. Given the profound recent interest in therapeutic manipulation of cytotoxic T cell responses, it is an opportune time to look back on the early history of the field. This Timeline describes how the early findings occurred and eventually led to current therapeutic applications

    Canine models of copper toxicosis for understanding mammalian copper metabolism

    Get PDF
    Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeostasis remain unanswered. Genetic studies in the Bedlington terrier, a dog breed affected with copper toxicosis, identified COMMD1, a gene that was previously unknown to be involved in copper metabolism. Besides the Bedlington terrier, a number of other dog breeds suffer from hereditary copper toxicosis and show similar phenotypes to humans with copper storage disorders. Unlike the heterogeneity of most human populations, the genetic structure within a purebred dog population is homogeneous, which is advantageous for unraveling the molecular genetics of complex diseases. This article reviews the work that has been done on the Bedlington terrier, summarizes what was learned from studies into COMMD1 function, describes hereditary copper toxicosis phenotypes in other dog breeds, and discusses the opportunities for genome-wide association studies on copper toxicosis in the dog to contribute to the understanding of mammalian copper metabolism and copper metabolism disorders in man
    corecore