22 research outputs found

    The Effects of Early Life Stress, Postnatal Diet Modulation, and Long-Term Western-Style Diet on Later-Life Metabolic and Cognitive Outcomes

    Get PDF
    Early life stress (ES) increases the risk to develop metabolic and brain disorders in adulthood. Breastfeeding (exclusivity and duration) is associated with improved metabolic and neurocognitive health outcomes, and the physical properties of the dietary lipids may contribute to this. Here, we tested whether early life exposure to dietary lipids mimicking some physical characteristics of breastmilk (i.e., large, phospholipid-coated lipid droplets; Concept Nuturis® infant milk formula (N-IMF)), could protect against ES-induced metabolic and brain abnormalities under standard circumstances, and in response to prolonged Western-style diet (WSD) in adulthood. ES was induced by exposing mice to limited nesting material from postnatal day (P) 2 to P9. From P16 to P42, male offspring were fed a standard IMF (S-IMF) or N-IMF, followed by either standard rodent diet (SD) or WSD until P230. We then assessed body composition development, fat mass, metabolic hormones, hippocampus-dependent cognitive function, and neurogenesis (proliferation and survival). Prolonged WSD resulted in an obesogenic phenotype at P230, which was not modulated by previous ES or N-IMF exposure. Nevertheless, ES and N-IMF modulated the effect of WSD on neurogenesis at P230, without affecting cognitive function, highlighting programming effects of the early life environment on the hippocampal response to later life challenges at a structural level

    The perceived quality of video consultations in geriatric outpatient care by early adopters

    Get PDF
    Purpose The COVID-19 pandemic caused rapid implementation and upscaling of video consulting. This study examined the perceived quality of care delivered through video consulting at a geriatric outpatient clinic, and how this related to adoption issues and barriers early adopting professionals found themselves confronted with. Methods We performed a qualitative study using semi-structured interviews with healthcare professionals complemented by the views of geriatric patients, family caregivers and medical secretaries. Participants from five academic centers and six teaching hospitals were included. Three researchers conducted the interviews, coded the data, and used thematic analysis. Results Interviews were conducted with 13 healthcare professionals, 8 patients, 7 family caregivers, and 4 medical secretaries. From these early adopters, we infer five criteria positively contributing to perceived quality of care provided by video consulting: (1) the patient has an intact cognitive function; (2) a family caregiver with digital literacy can be present; (3) doctor and patient already have an established relationship; (4) no immediate need for physical examination or intervention; and (5) the prior availability of a comprehensive and concise medical history. Overall, the uptake of video consulting in geriatric outpatient care appeared to be slow and laborious due to several implementation barriers. Conclusion The implementation of video consulting use among geriatricians and geriatric patients at the geriatric outpatient clinic was slow due to the absence of many facilitating factors, but video consulting might be offered as an alternative to face-to-face follow-up to suitable patients in geriatric outpatient clinics

    Dynamics of the Gut Microbiota in Children Receiving Selective or Total Gut Decontamination Treatment during Hematopoietic Stem Cell Transplantation

    Get PDF
    Bloodstream infections and graft-versus-host disease are common complications after hematopoietic stem cell transplantation (HSCT) procedures, associated with the gut microbiota that acts as a reservoir for opportunistic pathogens. Selective gut decontamination (SGD) and total gut decontamination (TGD) during HSCT have been associated with a decreased risk of developing these complications after transplantation. However, because studies have shown conflicting results, the use of these treatments remains subject of debate. In addition, their impact on the gut microbiota is not well studied. The aim of this study was to elucidate the dynamics of the microbiota during and after TGD and to compare these with the dynamics of SGD. In this prospective, observational, single center study fecal samples were longitudinally collected from 19 children eligible for allogenic HSCT (TGD, n=12; SGD, n=7), weekly during hospital admission and monthly after discharge. In addition, fecal samples were collected from 3 family stem cell donors. Fecal microbiota structure of patients and donors was determined by 16S rRNA gene amplicon sequencing. Microbiota richness and diversity markedly decreased during SGD and TGD and gradually increased after cessation of decontamination treatment. During SGD, gut microbiota composition was relatively stable and dominated by Bacteroides, whereas it showed high inter- and intraindividual variation and low Bacteroides abundance during TGD. In some children TGD allowed the genera Enterococcus and Streptococcus to thrive during treatment. A gut microbiota dominated by Bacteroides was associated with increased predicted activity of several metabolic processes. Comparing the microbiota of recipients and their donors indicated that receiving an SCT did not alter the patient's microbiota to become more similar to that of its donor. Overall, our findings indicate that SGD and TGD affect gut microbiota structure in a treatment-specific manner. Whether these treatments affect clinical outcomes via interference with the gut microbiota needs to be further elucidated. (C) 2019 American Society for Blood and Marrow Transplantation.Peer reviewe

    Aortic microcalcification is associated with elastin fragmentation in Marfan syndrome

    Get PDF
    Marfan syndrome (MFS) is a connective tissue disorder in which aortic rupture is the major cause of death. MFS patients with an aortic diameter below the advised limit for prophylactic surgery (<5 cm) may unexpectedly experience an aortic dissection or rupture, despite yearly monitoring. Hence, there is a clear need for improved prognostic markers to predict such aortic events. We hypothesize that elastin fragments play a causal role in aortic calcification in MFS, and that microcalcification serves as a marker for aortic disease severity. To address this hypothesis, we analysed MFS patient and mouse aortas. MFS patient aortic tissue showed enhanced microcalcification in areas with extensive elastic lamina fragmentation in the media. A causal relationship between medial injury and microcalcification was revealed by studies in vascular smooth muscle cells (SMCs); elastin peptides were shown to increase the activity of the calcification marker alkaline phosphatase (ALP) and reduce the expression of the calcification inhibitor matrix GLA protein in human SMCs. In murine Fbn1C1039G/+ MFS aortic SMCs, Alpl mRNA and activity were upregulated as compared with wild-type SMCs. The elastin peptide-induced ALP activity was prevented by incubation with lactose or a neuraminidase inhibitor, which inhibit the elastin receptor complex, and a mitogen-activated protein kinase kinase-1/2 inhibitor, indicating downstream involvement of extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation. Histological analyses in MFS mice revealed macrocalcification in the aortic root, whereas the ascending aorta contained microcalcification, as identified with the near-infrared fluorescent bisphosphonate probe OsteoSense-800. Significantly, microcalcification correlated strongly with aortic diameter, distensibility, elastin breaks, and phosphorylated ERK1/2. In conclusion, microcalcification co-localizes with aortic elastin degradation in MFS aortas of humans and mice, where elastin-derived peptides induce a calcification process in SMCs via the elastin receptor complex and ERK1/2 activation. We propose microcalcification as a novel imaging marker to monitor local elastin degradation a

    Impact of diets with a high content of greaves-meal protein or carbohydrates on faecal characteristics, volatile fatty acids and faecal calprotectin concentrations in healthy dogs

    Get PDF
    BACKGROUND: Research suggests that dietary composition influences gastrointestinal function and bacteria-derived metabolic products in the dog colon. We previously reported that dietary composition impacts upon the faecal microbiota of healthy dogs. This study aims at evaluating the dietary influences on bacteria-derived metabolic products associated with the changes in faecal microbiota that we had previously reported. We fed high-carbohydrate starch based (HCS), [crude protein: 194 g/kg, starch: 438 g/kg], high-protein greaves-meal (HPGM), [crude protein: 609 g/kg, starch: 54 g/kg] and dry commercial (DC), [crude protein: 264 g/kg, starch: 277 g/kg] diets, and studied their effects on the metabolism of the colonic microbiota and faecal calprotectin concentrations in five Beagle dogs, allocated according to the Graeco-Latin square design. Each dietary period lasted for three weeks and was crossed-over with washout periods. Food intake, body weight, and faecal consistency scores, dry matter, pH, ammonia, volatile fatty acids (VFAs), and faecal canine calprotectin concentrations were determined. RESULTS: Faecal ammonia concentrations decreased with the HCS diet. All dogs fed the HPGM diet developed diarrhoea, which led to differences in faecal consistency scores between the diets. Faecal pH was higher with the HPGM diet. Moreover, decreases in propionic and acetic acids coupled with increases in branched-chain fatty acids and valeric acid caused changes in faecal total VFAs in dogs on the HPGM diet. Faecal canine calprotectin concentration was higher with the HPGM diet and correlated positively with valeric acid concentration. CONCLUSIONS: The HPGM diet led to diarrhoea in all dogs, and there were differences in faecal VFA profiles and faecal canine calprotectin concentrations

    The Clinical Link between Human Intestinal Microbiota and Systemic Cancer Therapy

    No full text
    Clinical interest in the human intestinal microbiota has increased considerably. However, an overview of clinical studies investigating the link between the human intestinal microbiota and systemic cancer therapy is lacking. This systematic review summarizes all clinical studies describing the association between baseline intestinal microbiota and systemic cancer therapy outcome as well as therapy-related changes in intestinal microbiota composition. A systematic literature search was performed and provided 23 articles. There were strong indications for a close association between the intestinal microbiota and outcome of immunotherapy. Furthermore, the development of chemotherapy-induced infectious complications seemed to be associated with the baseline microbiota profile. Both chemotherapy and immunotherapy induced drastic changes in gut microbiota composition with possible consequences for treatment efficacy. Evidence in the field of hormonal therapy was very limited. Large heterogeneity concerning study design, study population, and methods used for analysis limited comparability and generalization of results. For the future, longitudinal studies investigating the predictive ability of baseline intestinal microbiota concerning treatment outcome and complications as well as the potential use of microbiota-modulating strategies in cancer patients are required. More knowledge in this field is likely to be of clinical benefit since modulation of the microbiota might support cancer therapy in the future

    The degradation kinetics and mechanism of moringin in aqueous solution and the cytotoxicity of degraded products

    No full text
    In this work, we investigated the degradation of moringin (4-[(α-L-rhamnosyloxy)benzyl]-isothiocyanate), a major bioactive isothiocyanate (ITC) found in moringa seeds (Moringa oleifera Lam), at various food processing conditions. Moringin degrades rapidly to several water-soluble products via a pseudo-first-order kinetics. By analyzing the reaction products, the degradation mechanism was found to be through hydrolyzing to (A) 1-O-(4-hydroxymethylphenyl) α-L-rhamnopyranoside (rhamnobenzyl alcohol RBA) or (B) rhamnobenzylamine. The formed amine further reacts with moringin to form N,N′-bis{4-[(α-L-rhamnosyloxy)benzyl]}thiourea (di-rhamnobenzyl thiourea, DRBTU). In addition, moringin isomerizes to 4-[(α-L-rhamnosyloxy)benzyl]thiocyanate (RBTC), which further reacts with moringin to form S,N-bis{4-[(α-L-rhamnosyloxy)benzyl]}-dithiocarbamate (DRBDTC). Furthermore, pH was found to have an effect on the degradation of moringin. RBA and RBTC were major degraded products in neutral and acidic conditions while thiourea (DRBTU) was in alkaline condition. Although moringin showed higher cytotoxicity to cancer cells, its degraded products showed very weak or no activities, suggesting that the isothiocyanate group of ITCs is essential for their cancer chemoprevention activities

    Deep Learning for Ventricular Arrhythmia Prediction Using Fibrosis Segmentations on Cardiac MRI Data

    No full text
    Many patients at high risk of life-threatening ventricular arrhythmias (VA) and sudden cardiac death (SCD) who received an implantable cardioverter defibrillator (ICD), never receive appropriate device therapy. The presence of fibrosis on LGE CMR imaging is shown to be associated with increased risk of VA. Therefore, there is a strong need for both automatic segmentation and quantification of cardiac fibrosis as well as better risk stratification for SCD. This study first presents a novel two-stage deep learning network for the segmentation of left ventricle myocardium and fibrosis on LGE CMR images. Secondly it aims to effectively predict device therapy in ICD patients by using a graph neural network approach which incorporates both myocardium and fibrosis features as well as the left ventricle geometry. Our segmentation network outperforms previous state-of-the-art methods on 2D CMR data, reaching a Dice score of 0.82 and 0.77 on myocardium and fibrosis segmentation, respectively. The ICD therapy prediction network reaches an AUC of 0.60 while using only CMR data and outperforms baseline methods based on current guideline markers for ICD implantation. This work lays a strong basis for future research on improved risk stratification for VA and SCD
    corecore