44 research outputs found

    Sigmoidal Adenocarcinoma as a Late Complication of Ureterosigmoidostomy

    Get PDF
    The Report at 17th European Congress of Internal Medicine (30th August-1st September, 2018, Wiesbaden, Germany)

    Quantitative analysis of SLC34A2 expression in different types of ovarian tumors

    No full text
    Aim: The main purpose of this study was to estimate the SLC34A2 gene expression in normal ovary and different types of ovarian tumors. Methods: We have investigated SLC34A2 gene expression level in papillary serous, endometrioid, unspecified adenocarcinomas, benign tumors, and normal ovarian tissues using real-time PCR analysis. Differences in gene expression were calculated as fold changes in gene expression in ovarian carcinomas and benign tumors compared to normal ovary. Results: We have found that SLC34A2 gene was highly expressed in well-differentiated endometrioid and papillary serous ovarian carcinomas compared to low-differentiated endometrioid carcinomas, benign serous cystoadenomas and normal ovary. Analysis of SLC34A2 gene expression according to tumor differentiation level (poor- and well-differentiated) showed that SLC34A2 is up-regulated in well differentiated tumors. Conclusion: Upregulation of SLC34A2 gene expression in well-differentiated tumors may reflect cell differentiation processes during ovarian cancerogenesis and could serve as potential marker for ovarian cancer diagnosis and prognosis

    Electrochemical behaviour of Ti/Al2O3/Ni nanocomposite material in artificial physiological solution: Prospects for biomedical application

    Get PDF
    Inorganic-based nanoelements such as nanoparticles (nanodots), nanopillars and nanowires, which have at least one dimension of 100 nm or less, have been extensively developed for biomedical applications. Furthermore, their properties can be varied by controlling such parameters as element shape, size, surface functionalization, and mutual interactions. In this study, Ni-alumina nanocomposite material was synthesized by the dc-Ni electrodeposition into a porous anodic alumina template (PAAT). The structural, morphological, and corrosion properties were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical techniques (linear sweep voltammetry). Template technology was used to obtain Ni nanopillars (NiNPs) in the PAAT nanocomposite. Low corrosion current densities (order of 0.5 μA/cm2) were indicators of this nanocomposite adequate corrosion resistance in artificial physiological solution (0.9% NaCl). A porous anodic alumina template is barely exposed to corrosion and performs protective functions in the composite. The results may be useful for the development of new nanocomposite materials technologies for a variety of biomedical applications including catalysis and nanoelectrodes for sensing and fuel cells. They are also applicable for various therapeutic purposes including targeting, diagnosis, magnetic hyperthermia, and drug delivery. Therefore, it is an ambitious task to research the corrosion resistance of these magnetic nanostructures in simulated body fluid. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Government Council on Grants, Russian FederationBelarusian Republican Foundation for Fundamental Research, BRFFR: Ф18Д-00720163522Funding: The work was performed with support of State Scientific and Technical Program “Nanotech” (ГБЦ No 20163522), Belarusian Republican Foundation for Fundamental Research (Grant No. Ф18Д-007), Act 211 of Government of Russian Federation (contract No. 02.A03.21.0011). Additionally, the work was partially supported by the Grant of World Federation of Scientists (Geneva, Switzerland)

    The study of phosphate transporter NaPi2b expression in different histological types of epithelial ovarian cancer

    No full text
    The identification of markers that are specifically expressed by different histological types of epithelial ovarian cancer (EOC) may lead to the development of novel and more specific diagnostic and therapeutic strategies. Sodium-dependent phosphate transporter NaPi2b (or MX35 ovarian cancer antigen) is a novel perspective marker of EOC. To date, the studies on NaPi2b/MX35 expression in different histological types of EOC are limited. Aim: To examine NaPi2b/MX35 expression in different histological types of epithelial ovarian tumors. Methods: Here, we describe the analysis of NaPi2b expression in serous (n = 17), endometrioid (n = 8), and mucinous ovarian tumors (n = 3) by Western-blotting (WB), immunohistochemistry and RT-PCR. Results: The results of immunohistochemical and WB analysis showed that benign and well-differentiated malignant papillary serous tumors as well as well-differentiated malignant endometriod tumors overexpress NaPi2b protein. However, no overexpression of NaPi2b was detected in benign and malignant mucinous tumors as well as in poorly differentiated endometriod tumors. Notably, the expression NaPi2b mRNA was detected in all investigated histological types of EOC. Conclusion: We have shown the differential expression profile of NaPi2b phosphate transporter at protein level in various histological types of epithelial ovarian cancer. This finding might facilitate the development of more effective approaches for diagnosis and treatment of this disease

    Studying the Thermodynamic Properties of Composite Magnetic Material Based on Anodic Alumina

    Get PDF
    Magnetic nanoparticles based on Fe3O4 and their modifications of surface with therapeutic substances are of great interest, especially drug delivery for cancer therapy includes boron-neutron capture therapy. In this paper we study the thermodynamic, morphological, structural, and chemical properties of a composite material consisting of nickel nanowires (NWs) electrochemically deposited in the pores of the membrane of porous anodic aluminum oxide (PAA) by methods of differential thermal analysis (DTA), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and dispersive X-ray spectroscopy (EDX)

    Formation and corrosion properties of Ni-based composite material in the anodic alumina porous matrix

    Get PDF
    Ni nanopillars (Ni NPs) composite material formation technology embedded in porous anodic alumina by electrochemical deposition is presented in this paper. The morphological and structural properties of the composite material were investigated using scanning electron microscopy, atomic force microscopy, X-ray diffraction. The corrosion resistance of the nanocomposite materials has been studied by potentiodynamic polarization curves analysis and polarization resistance method. The composite represents the array of vertically ordered Ni NPs with the identical size in alumina matrix. XRD investigation indicates that Ni NPs are polynanocrystalline material with 18 nm crystallite size. It has been shown that Ni NPs and the composite material have sufficient corrosion resistance in a 0.9% aqueous NaCl solution. Porous alumina is the neutral and protective component of the composite. These nanocomposite materials can be excellent candidates for practical use in electronics, sensorics, biomedicine

    Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane

    Get PDF
    High-quality and compact arrays of Ni nanowires with a high ratio (up to 700) were obtained by DC electrochemical deposition into porous anodic alumina membranes with a distance between pores equal to 105 nm. The nanowire arrays were examined using scanning electron microscopy, X-ray diffraction analysis and vibration magnetometry at 300 K and 4.2 K. Microscopic and X-ray diffraction results showed that Ni nanowires are homogeneous, with smooth walls and mostly single-crystalline materials with a 220-oriented growth direction. The magnetic properties of the samples (coercivity and squareness) depend more on the length of the nanowires and the packing factor (the volume fraction of the nanowires in the membrane). It is shown that the dipolar interaction changes the demagnetizing field during a reversal magnetization of the Ni nanowires, and the general effective field of magnetostatic uniaxial shape anisotropy. The effect of magnetostatic interaction between ultra-long nanowires (with an aspect ratio of >500) in samples with a packing factor of ≥37% leads to a reversal magnetization state, in which a “curling”-type model of nanowire behavior is realized

    Immobilization of boron-rich compound on Fe3O4 nanoparticles: Stability and cytotoxicity

    Get PDF
    Magnetic nanoparticles based on Fe3O4 and their modifications of surface with therapeutic substances are of great interest, especially drug delivery for cancer therapy includes boron-neutron capture therapy. The results of boron-rich compound (carborane borate) attachment to previously aminated by (3-aminopropyl)-trimethoxysilane iron oxide nanoparticles are presented. Energy-dispersive X-ray analysis and Fourier transform infrared spectroscopy with attenuated total reflection (ATR) accessory confirmed change of nanoparticles elemental content after modification and formation of new bond between Fe3O4 and attached molecules. Scanning and transmission electron microscopy showed that Fe3O4 nanoparticles average size is 18.9 nm. Phase parameters were investigated by powder X-ray diffraction, Fe3O4 nanoparticles magnetic behavior was evaluated by Mössbauer spectroscopy. Chemical and colloidal stability was studied using simulated body fluid (phosphate buffer – PBS). Modified nanoparticles have excellent stability in PBS (pH = 7.4), characterized by X-ray diffraction, Mössbauer spectroscopy and dynamic light scattering. Fe3O4 biocompatibility was elucidated in-vitro using cultured mouse embryonic fibroblasts. The obtained results show the increasing of IC50 from 0.110 mg/ml for Fe3O4 to 0.405 mg/ml for Fe3O4-Carborane nanoparticles. Obtained data confirm biocompatibility and stability of synthesized nanoparticles and potential to use them in boron-neutron capture therapy

    Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Celiac disease (CD) is an autoimmune enteropathy triggered by the ingestion of gluten. Gluten-sensitive individuals (GS) cannot tolerate gluten and may develop gastrointestinal symptoms similar to those in CD, but the overall clinical picture is generally less severe and is not accompanied by the concurrence of tissue transglutaminase autoantibodies or autoimmune comorbidities. By studying and comparing mucosal expression of genes associated with intestinal barrier function, as well as innate and adaptive immunity in CD compared with GS, we sought to better understand the similarities and differences between these two gluten-associated disorders.</p> <p>Methods</p> <p>CD, GS and healthy, gluten-tolerant individuals were enrolled in this study. Intestinal permeability was evaluated using a lactulose and mannitol probe, and mucosal biopsy specimens were collected to study the expression of genes involved in barrier function and immunity.</p> <p>Results</p> <p>Unlike CD, GS is not associated with increased intestinal permeability. In fact, this was significantly reduced in GS compared with controls (<it>P </it>= 0.0308), paralleled by significantly increased expression of claudin (CLDN) 4 (<it>P </it>= 0.0286). Relative to controls, adaptive immunity markers interleukin (IL)-6 (<it>P </it>= 0.0124) and IL-21 (<it>P </it>= 0.0572) were expressed at higher levels in CD but not in GS, while expression of the innate immunity marker Toll-like receptor (TLR) 2 was increased in GS but not in CD (<it>P </it>= 0.0295). Finally, expression of the T-regulatory cell marker FOXP3 was significantly reduced in GS relative to controls (<it>P </it>= 0.0325) and CD patients (<it>P </it>= 0.0293).</p> <p>Conclusions</p> <p>This study shows that the two gluten-associated disorders, CD and GS, are different clinical entities, and it contributes to the characterization of GS as a condition associated with prevalent gluten-induced activation of innate, rather than adaptive, immune responses in the absence of detectable changes in mucosal barrier function.</p
    corecore