143 research outputs found

    PBDEs in marine and freshwater sediments from Belgium: levels, profiles and relations with biota

    Get PDF
    Sediments from the Belgian North Sea (BNS), the Western Scheldt Estuary (SE) and freshwater watercourses from the Scheldt basin were analysed for eight PBDE congeners, namely BDEs 28, 47, 99, 100, 153, 154, 183 and 209. Previously analysed biological samples from the same locations in the BNS and the SE have been shown to contain large amounts of PBDEs. Surprisingly, PBDE concentrations in the sediments were below the LOQ for samples from the BNS (except BDE 209), while in those from the SE the sum of PBDEs (not including BDE 209) were higher and ranged from 0.20 to 0.41 ng g-1 dw. BDE 209 could be detected in 83% of the samples from the BNS and in all the samples from the SE. Concentrations up to 1200 ng g-1 were hereby measured in the SE. Compared to the marine and estuarine locations, the sediments from the freshwater watercourses were relatively more polluted with the lower brominated PBDEs (-1 dw). BDE 209 concentrations up to 320 ng g-1 dw were measured in those sediments. However, the contribution of BDE 209 to the total amount of PBDEs varied much more at the freshwater locations than in the SE, which suggests a different input of pollutants. PBDE profiles observed in biological samples do not match the profiles of the sediments. BDE 183 and 209 could not be quantified in biota, although these congeners were undoubtedly present in the sediments. This raises questions about the bioavailability of these congeners in the environment

    Raising argument strength using negative evidence: A constraint on models of induction

    Get PDF
    Both intuitively, and according to similarity-based theories of induction, relevant evidence raises argument strength when it is positive and lowers it when it is negative. In three experiments, we tested the hypothesis that argument strength can actually increase when negative evidence is introduced. Two kinds of argument were compared through forced choice or sequential evaluation: single positive arguments (e.g., “Shostakovich’s music causes alpha waves in the brain; therefore, Bach’s music causes alpha waves in the brain”) and double mixed arguments (e.g., “Shostakovich’s music causes alpha waves in the brain, X’s music DOES NOT; therefore, Bach’s music causes alpha waves in the brain”). Negative evidence in the second premise lowered credence when it applied to an item X from the same subcategory (e.g., Haydn) and raised it when it applied to a different subcategory (e.g., AC/DC). The results constitute a new constraint on models of induction

    Interlaboratory exercise for the analysis of carotenoids and related compounds in dried mango fruit (Mangifera indica L.)

    Get PDF
    An interlaboratory comparison was done for the analysis of carotenoids in freeze-dried mango. The study was performed from July to September 2018. Mango fruit was freeze-dried, homogenized, and packaged under vacuum conditions in portions of 6 g (test sample). Two test samples were sent to the participating laboratories for analysis. Laboratory results were rated using Z-scores in accordance with ISO 13528 and ISO 17043. The standard deviation for proficiency assessment (also called target standard deviation) was determined using a modified Horwitz function and varied between 10% and 25%, depending on the analyte. Out of 14 laboratories from 10 different countries, 9 laboratories (64%) obtained a satisfactory performance (Z ≤ 2) for the analysis of β-carotene. While for 7 laboratories that analyzed α-carotene, (9Z)-β-carotene, β-cryptoxanthin, and zeaxanthin, 4 laboratories (57%) obtained a satisfactory performance. However, only 2 laboratories out of 7 (29%) obtained a satisfactory performance for lutein. Based on the comparability of the analytical results, this study concludes that freeze-dried mango pulp can be used as a reference material for the analysis of α and β-carotene, (9Z)-β-carotene, β-cryptoxanthin, and zeaxanthin by applying different analytical procedures for their extraction and quantification

    Instrumental methods and challenges in quantifying polybrominated diphenyl ethers in environmental extracts: a review

    Get PDF
    Increased interest in the fate, transport and toxicity of polybrominated diphenyl ethers (PBDEs) over the past few years has led to a variety of studies reporting different methods of analysis for these persistent organic pollutants. Because PBDEs encompass a range of vapor pressures, molecular weights and degrees of bromine substitution, various analytical methods can lead to discrimination of some PBDE congeners. Recent improvements in injection techniques and mass spectrometer ionization methods have led to a variety of options to determine PBDEs in environmental samples. The purpose of this paper is therefore to review the available literature describing the advantages and disadvantages in choosing an injection technique, gas chromatography column and detector. Additional discussion is given to the challenges in measuring PBDEs, including potential chromatographic interferences and the lack of commercial standards for higher brominated congeners, which provides difficulties in examining degradation and debromination of BDE congeners, particularly for BDE 209

    Exemplar by feature applicability matrices and other Dutch normative data for semantic concepts

    Full text link

    Interlaboratory exercise for the analysis of carotenoids and related compounds in dried mango fruit (Mangifera indica L.)

    Get PDF
    An interlaboratory comparison was done for the analysis of carotenoids in freeze-dried mango. The study was performed from July to September 2018. Mango fruit was freeze-dried, homogenized, and packaged under vacuum conditions in portions of 6 g (test sample). Two test samples were sent to the participating laboratories for analysis. Laboratory results were rated using Z-scores in accordance with ISO 13528 and ISO 17043. The standard deviation for proficiency assessment (also called target standard deviation) was determined using a modified Horwitz function and varied between 10% and 25%, depending on the analyte. Out of 14 laboratories from 10 different countries, 9 laboratories (64%) obtained a satisfactory performance (Z ≤ 2) for the analysis of β-carotene. While for 7 laboratories that analyzed α-carotene, (9Z)-β-carotene, β-cryptoxanthin, and zeaxanthin, 4 laboratories (57%) obtained a satisfactory performance. However, only 2 laboratories out of 7 (29%) obtained a satisfactory performance for lutein. Based on the comparability of the analytical results, this study concludes that freeze-dried mango pulp can be used as a reference material for the analysis of α and β-carotene, (9Z)-β-carotene, β-cryptoxanthin, and zeaxanthin by applying different analytical procedures for their extraction and quantification.This work was performed within the frame of the TEAM EC2017TEA442A103 VLIR-UOS project “Improving Ecuadorian child nutrition by using mango by-products as potential sources of bioactive compounds”. JV-Ch wants to acknowledge the quality technical support of Samara Fernández de Souza from VITO. VM-P acknowledges Mayra Anaguano from EPN. AZM acknowledges Fabiane C. Petry for the carotenoid analysis, FAPESP (grant 2018/23752-1) and CNPq (grant 309182/2018-2).Peer reviewe
    corecore