175 research outputs found

    Infrared Resonance Enhanced Multiphoton Ionization of Fullerenes

    Get PDF
    Gas-phase fullerenes are resonantly heated by a train of high power subpicosecond pulses from a free electron laser (FEL) to internal energies at which they efficiently undergo delayed ionization. When the laser is tuned from 6–20μm while the amount of laser produced parent ions is recorded, resonant absorption of 200–600 IR photons, resulting in almost fragmentation-free ion spectra, is observed. Infrared resonance enhanced multiphoton ionization with a FEL is shown to enable extremely sensitive IR spectroscopy with mass selective detection of gas-phase fullerenes

    Studying the Key Intermediate of RNA Autohydrolysis by Cryogenic Gas-Phase Infrared Spectroscopy

    Get PDF
    Over the course of the COVID-19 pandemic, mRNA-based vaccines have gained tremendous importance. The development and analysis of modified RNA molecules benefit from advanced mass spectrometry and require sufficient understanding of fragmentation processes. Analogous to the degradation of RNA in solution by autohydrolysis, backbone cleavage of RNA strands was equally observed in the gas phase; however, the fragmentation mechanism remained elusive. In this work, autohydrolysis-like intermediates were generated from isolated RNA dinucleotides in the gas phase and investigated using cryogenic infrared spectroscopy in helium nanodroplets. Data from both experiment and density functional theory provide evidence for the formation of a five-membered cyclic phosphate intermediate and rule out linear or six-membered structures. Furthermore, the experiments show that another prominent condensed-phase reaction of RNA nucleotides can be induced in the gas phase: the tautomerization of cytosine. Both observed reactions are therefore highly universal and intrinsic properties of the investigated molecules

    Infrared Spectroscopy of Fluorenyl Cations at Cryogenic Temperatures

    Get PDF
    The notion of (anti)aromaticity is a successful concept in chemistry to explain the structure and stability of polycyclic hydrocarbons. Cyclopentadienyl and fluorenyl cations are among the most studied classical antiaromatic systems. In this work, fluorenyl cations are investigated by high-resolution gas-phase infrared spectroscopy in helium droplets. Bare fluorenyl cations are generated in the gas phase by electrospray ionization. After mass-to-charge selection, ions are captured in ultracold helium nanodroplets and probed by infrared spectroscopy using a widely tunable free-electron laser in the 600–1700 cm–1 range. The highly resolved cryogenic infrared spectra confirm, in combination with DFT computations, that all cations are present in their singlet states

    'Mine's a Pint of Bitter': Performativity, gender, class and representations of authenticity in real-ale tourism

    Get PDF
    Leisure choices are expressive of individual agency around the maintenance of taste, boundaries, identity and community. This research paper is part of a wider project designed to assess the social and cultural value of real ale to tourism in the north of England. This paper explores the performativity of real-ale tourism and debates about belonging in northern English real-ale communities. The research combines an ethnographic case study of a real-ale festival with semi-structured interviews with organisers and volunteers, northern English real-ale brewers and real-ale tourists visiting the festival. It is argued that real-ale tourism, despite its origins in the logic of capitalism, becomes a space where people can perform Habermasian, communicative leisure, and despite the contradictions of preferring some capitalist industries over others on the basis of their perceived smaller size and older age, real-ale fans demonstrate agency in their performativity

    Nazi Punks Folk Off: Leisure, Nationalism, Cultural Identity and the Consumption of Metal and Folk Music

    Get PDF
    Far-right activists have attempted to infiltrate and use popular music scenes to propagate their racialised ideologies. This paper explores attempts by the far right to co-opt two particular music scenes: black metal and English folk. Discourse tracing is used to explore online debates about boundaries, belonging and exclusion in the two scenes, and to compare such online debates with ethnographic work and previous research. It is argued that both scenes have differently resisted the far right through the policing of boundaries and communicative choices, but both scenes are compromised by their relationship to myths of whiteness and the instrumentality of the pop music industry

    Fast algorithms for computing sequence distances by exhaustive substring composition

    Get PDF
    The increasing throughput of sequencing raises growing needs for methods of sequence analysis and comparison on a genomic scale, notably, in connection with phylogenetic tree reconstruction. Such needs are hardly fulfilled by the more traditional measures of sequence similarity and distance, like string edit and gene rearrangement, due to a mixture of epistemological and computational problems. Alternative measures, based on the subword composition of sequences, have emerged in recent years and proved to be both fast and effective in a variety of tested cases. The common denominator of such measures is an underlying information theoretic notion of relative compressibility. Their viability depends critically on computational cost. The present paper describes as a paradigm the extension and efficient implementation of one of the methods in this class. The method is based on the comparison of the frequencies of all subwords in the two input sequences, where frequencies are suitably adjusted to take into account the statistical background

    Protomers of Benzocaine: Solvent and Permittivity Dependence

    Get PDF
    The immediate environment of a molecule can have a profound influence on its properties. Benzocaine, the ethyl ester of para-aminobenzoic acid, which finds an application as a local anesthetic (LA), is found to adopt in its protonated form at least two populations of distinct structures in the gas phase and their relative intensities strongly depend on the properties of the solvent used in the electrospray ionization (ESI) process. Here we combine IR-vibrational spectroscopy with ion mobility-mass spectrometry (IM-MS) to yield gas-phase IR spectra of simultaneously m/z and drift-time resolved species of benzocaine. The results allow for an unambiguous identification of two protomeric species - the N- and O-protonated form. Density functional theory (DFT) calculations link these structures to the most stable solution and gas-phase structures, respectively, with the electric properties of the surrounding medium being the main determinant for the preferred protonation site. The fact that the N-protonated form of benzocaine can be found in the gas phase is owed to kinetic trapping of the solution phase structure during transfer into the experimental setup. These observations confirm earlier studies on similar molecules where N- and O-protonation has been suggested

    A reexamination of information theory-based methods for DNA-binding site identification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Searching for transcription factor binding sites in genome sequences is still an open problem in bioinformatics. Despite substantial progress, search methods based on information theory remain a standard in the field, even though the full validity of their underlying assumptions has only been tested in artificial settings. Here we use newly available data on transcription factors from different bacterial genomes to make a more thorough assessment of information theory-based search methods.</p> <p>Results</p> <p>Our results reveal that conventional benchmarking against artificial sequence data leads frequently to overestimation of search efficiency. In addition, we find that sequence information by itself is often inadequate and therefore must be complemented by other cues, such as curvature, in real genomes. Furthermore, results on skewed genomes show that methods integrating skew information, such as <it>Relative Entropy</it>, are not effective because their assumptions may not hold in real genomes. The evidence suggests that binding sites tend to evolve towards genomic skew, rather than against it, and to maintain their information content through increased conservation. Based on these results, we identify several misconceptions on information theory as applied to binding sites, such as negative entropy, and we propose a revised paradigm to explain the observed results.</p> <p>Conclusion</p> <p>We conclude that, among information theory-based methods, the most unassuming search methods perform, on average, better than any other alternatives, since heuristic corrections to these methods are prone to fail when working on real data. A reexamination of information content in binding sites reveals that information content is a compound measure of search and binding affinity requirements, a fact that has important repercussions for our understanding of binding site evolution.</p
    corecore