137 research outputs found

    Detection of Group Sentiment for Dynamic Reaction Moments in Videoconferences

    Get PDF
    The present disclosure describes computer-implemented systems and methods for providing dynamic reactions in a synchronous videoconference by identifying the individual reactions of the participants and displaying a full-screen dynamic reaction moment when a number over a threshold of the participants share the same reaction. Dynamic reaction moments allow for the group in the videoconference to work together to convey the collective expression of the group. Participants will feel the celebration of the group and recognition from the team, encouraging the participants and enhancing team unity

    The AERO-VISTA Interactive Spectrogram Display: An Original Software Solution for Scientific Operations of Twin 6U CubeSats

    Get PDF
    Led by MIT Haystack Observatory, the AERO and VISTA twin 6U CubeSats launching in 2022 will study the auroral regions of the Earth in the medium and high radio frequency bands. Novel vector sensors, developed by MIT Lincoln Laboratory, will produce hundreds of gigabytes each day while conducting independent and joint (interferometric) observations of auroral phenomena such as auroral kilometric radiation. With a limited number of downlink opportunities and volumes on the order of gigabytes, mission operations require a tool to guide scientific processing and downlink decisions. The AERO-VISTA Interactive Spectro-gram (AVIS) Display, developed through open-source Dash Python and Digital RF libraries, fulfills this need through a dynamic user interface which allows mission scientists to perform preliminary data analysis and selection. Built-in data analysis tools such as channel selectors, data scaling, and axis sliders allow scientists to critically assess preliminary data for further investigation. A variable resolution selection tool provides for efficient and accurate selections of auroral phenomena viewed in the spectrogram. Standardized exportation procedures are integrated into uplink systems for in-flight-processing. The AVIS Display successfully demonstrates an original UI for optimized data management between two spacecraft conducting scientific operations

    Removing Radio Frequency Interference from Auroral Kilometric Radiation with Stacked Autoencoders

    Full text link
    Radio frequency data in astronomy enable scientists to analyze astrophysical phenomena. However, these data can be corrupted by radio frequency interference (RFI) that limits the observation of underlying natural processes. In this study, we extend recent developments in deep learning algorithms to astronomy data. We remove RFI from time-frequency spectrograms containing auroral kilometric radiation (AKR), a coherent radio emission originating from the Earth's auroral zones that is used to study astrophysical plasmas. We propose a Denoising Autoencoder for Auroral Radio Emissions (DAARE) trained with synthetic spectrograms to denoise AKR signals collected at the South Pole Station. DAARE achieves 42.2 peak signal-to-noise ratio (PSNR) and 0.981 structural similarity (SSIM) on synthesized AKR observations, improving PSNR by 3.9 and SSIM by 0.064 compared to state-of-the-art filtering and denoising networks. Qualitative comparisons demonstrate DAARE's capability to effectively remove RFI from real AKR observations, despite being trained completely on a dataset of simulated AKR. The framework for simulating AKR, training DAARE, and employing DAARE can be accessed at github.com/Cylumn/daare.Comment: 5 pages, 3 figures, 48th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023

    AERO: Auroral Emission Radio Observer

    Get PDF
    Earth’s aurora has a deep complexity and richness that is of intense interest for our understanding of space physics, with many unknown or ill-defined features. Auroral radio emissions in the LF and HF frequency range allow radio remote sensing, leading to investigation of nonlinear wave processes and wave-particle interactions operating in a broad range of heliospheric, planetary and astrophysical plasmas. The Auroral Emission Radio Observer (AERO) is a one-year CubeSat mission in polar orbit that will significantly advance our knowledge by examining radio emissions from the auroral acceleration region in near-Earth space. AERO uses a unique electromagnetic vector sensor (VS) to study AKR at LF and HF frequencies (100 kHz – 5 MHz) with six orthogonal dipole and loop antennas giving angle of arrival and polarization information within a single unit. The mission will store many orbits of compressed data on board, then select download segments based either on summary spectrogram ground analysis or on automatic detection of bright auroral radio events. AERO is also a stepping stone to a novel spaceborne high capability remote sensing platform for diverse scientific targets such as radio emission from the solar corona and inner heliosphere, and anisotropic turbulence properties of interplanetary medium plasma

    A likelihood-based particle imaging filter using prior information

    Get PDF
    Background: Particle imaging can increase precision in proton and ion therapy. Interactions with nuclei in the imaged object increase image noise and reduce image quality, especially for multinucleon ions that can fragment, such as helium. Purpose: This work proposes a particle imaging filter, referred to as the Prior Filter, based on using prior information in the form of an estimated relative stopping power (RSP) map and the principles of electromagnetic interaction, to identify particles that have undergone nuclear interaction. The particles identified as having undergone nuclear interactions are then excluded from the image reconstruction, reducing the image noise. Methods: The Prior Filter uses Fermi–Eyges scattering and Tschalär straggling theories to determine the likelihood that a particle only interacts electromagnetically. A threshold is then set to reject those particles with a low likelihood. The filter was evaluated and compared with a filter that estimates this likelihood based on the measured distribution of energy and scattering angle within pixels, commonly implemented as the 3σ filter. Reconstructed radiographs from simulated data of a 20-cm water cylinder and an anthropomorphic chest phantom were generated with both protons and helium ions to assess the effect of the filters on noise reduction. The simulation also allowed assessment of secondary particle removal through the particle histories. Experimental data were acquired of the Catphan CTP 404 Sensitometry phantom using the U.S. proton CT (pCT) collaboration prototype scanner. The proton and helium images were filtered with both the prior filtering method and a state-of-the-art method including an implementation of the 3σ filter. For both cases, a dE-E telescope filter, designed for this type of detector, was also applied. Results: The proton radiographs showed a small reduction in noise (1 mm of water-equivalent thickness [WET]) but a larger reduction in helium radiographs (up to 5–6 mm of WET) due to better secondary filtering. The proton and helium CT images reflected this, with similar noise at the center of the phantom (0.02 RSP) for the proton images and an RSP noise of 0.03 for the proposed filter and 0.06 for the 3σ filter in the helium images. Images reconstructed from data with a dose reduction, up to a factor of 9, maintained a lower noise level using the Prior Filter over the state-of-the-art filtering method. Conclusions: The proposed filter results in images with equal or reduced noise compared to those that have undergone a filtering method typical of current particle imaging studies. This work also demonstrates that the proposed filter maintains better performance against the state of the art with up to a nine-fold dose reduction

    AERO & VISTA: Demonstrating HF Radio Interferometry with Vector Sensors

    Get PDF
    AERO (Auroral Emission Radio Observer) and VISTA (Vector Interferometry Space Technology using AERO) are recently selected NASA HTIDeS CubeSat missions for terrestrial auroral science and radio interferometric technology demonstration. The AERO and VISTA CubeSats both host vector sensing antenna systems providing advanced electromagnetic capabilities. Together, they will provide the first in-space demonstration of interferometric imaging, beamforming, and nulling using electromagnetic vector sensors at low frequencies (100 kHz –15 MHz). A key goal of the joint missions’ technology demonstration is to validate theoretical sensor performance modeling indicating that interferometric arrays composed of vector sensors will be able to maintain sensitivity even in the presence of terrestrial interference. If validated in flight, this capability would relax the requirement that space-based low frequency interferometers be placed far from the Earth (e.g. lunar orbit), and the closer communications range will significantly increase the data volume returned from space-based radio telescope systems. The two-spacecraft AERO+VISTA mission will address the auroral science goals of AERO (Erickson et al. 2018, SSC18) while adding three additional technology demonstration goals enabled by the second CubeSat, VISTA

    A specific insertion of a solo-LTR characterizes the Y-chromosome of Bryonia dioica (Cucurbitaceae)

    Get PDF
    Background: Relatively few species of flowering plants are dioecious and even fewer are known to have sex chromosomes. Current theory posits that homomorphic sex chromosomes, such as found in Bryonia dioica (Cucurbitaceae), offer insight into the early stages in the evolution of sex chromosomes from autosomes. Little is known about these early steps, but an accumulation of transposable element sequences has been observed on the Ychromosomes of some species with heteromorphic sex chromosomes. Recombination, by which transposable elements are removed, is suppressed on at least part of the emerging Y-chromosome, and this may explain the correlation between the emergence of sex chromosomes and transposable element enrichment. Findings: We sequenced 2321 bp of the Y-chromosome in Bryonia dioica that flank a male-linked marker, BdY1, reported previously. Within this region, which should be suppressed for recombination, we observed a solo-LTR nested in a Copia-like transposable element. We also found other, presumably paralogous, solo-LTRs in a consensus sequence of the underlying Copia-like transposable element. Conclusions: Given that solo-LTRs arise via recombination events, it is noteworthy that we find one in a genomic region where recombination should be suppressed. Although the solo-LTR could have arisen before recombination was suppressed, creating the male-linked marker BdY1, our previous study on B. dioica suggested that BdY1 may not lie in the recombination-suppressed region of the Y-chromosome in all populations. Presence of a solo-LTR near BdY1 therefore fits with the observed correlation between retrotransposon accumulation and the suppression of recombination early in the evolution of sex chromosomes. These findings further suggest that the homomorphic sex chromosomes of B. dioica, the first organism for which genetic XY sex-determination was inferred, are evolutionarily young and offer reference information for comparative studies of other plant sex chromosomes

    An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    Get PDF
    Background: Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. Methodology/Principal Findings: We identified an Anopheles gambiae epithelial serine protease (AgESP) that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the salivary glands that is critical for Plasmodium parasites to cross these two epithelial barriers. AgESP silencing greatly reduces Plasmodium berghei and Plasmodium falciparum midgut invasion and prevents the transcriptional activation of gelsolin, a key regulator of actin remodeling and a reported Plasmodium agonist. AgESP expression is highly induced in midgut cells invaded by Plasmodium, suggesting that this protease also participates in the apoptotic response to invasion. In salivary gland epithelial cells, AgESP is localized on the basal side–the surface with which sporozoites interact. AgESP expression in the salivary gland is also induced in response to P. berghei and P. falciparum sporozoite invasion, and AgESP silencing significantly reduces the number of sporozoites that invade this organ. Conclusion: Our findings indicate that AgESP is required for Plasmodium parasites to effectively traverse the midgut and salivary gland epithelial barriers. Plasmodium parasites need to modify the actin cytoskeleton of mosquito epithelial cells t

    Changing composition of SARS-CoV-2 lineages and rise of Delta variant in England.

    Get PDF
    BACKGROUND: Since its emergence in Autumn 2020, the SARS-CoV-2 Variant of Concern (VOC) B.1.1.7 (WHO label Alpha) rapidly became the dominant lineage across much of Europe. Simultaneously, several other VOCs were identified globally. Unlike B.1.1.7, some of these VOCs possess mutations thought to confer partial immune escape. Understanding when and how these additional VOCs pose a threat in settings where B.1.1.7 is currently dominant is vital. METHODS: We examine trends in the prevalence of non-B.1.1.7 lineages in London and other English regions using passive-case detection PCR data, cross-sectional community infection surveys, genomic surveillance, and wastewater monitoring. The study period spans from 31st January 2021 to 15th May 2021. FINDINGS: Across data sources, the percentage of non-B.1.1.7 variants has been increasing since late March 2021. This increase was initially driven by a variety of lineages with immune escape. From mid-April, B.1.617.2 (WHO label Delta) spread rapidly, becoming the dominant variant in England by late May. INTERPRETATION: The outcome of competition between variants depends on a wide range of factors such as intrinsic transmissibility, evasion of prior immunity, demographic specificities and interactions with non-pharmaceutical interventions. The presence and rise of non-B.1.1.7 variants in March likely was driven by importations and some community transmission. There was competition between non-B.1.17 variants which resulted in B.1.617.2 becoming dominant in April and May with considerable community transmission. Our results underscore that early detection of new variants requires a diverse array of data sources in community surveillance. Continued real-time information on the highly dynamic composition and trajectory of different SARS-CoV-2 lineages is essential to future control efforts. FUNDING: National Institute for Health Research, Medicines and Healthcare products Regulatory Agency, DeepMind, EPSRC, EA Funds programme, Open Philanthropy, Academy of Medical Sciences Bill,Melinda Gates Foundation, Imperial College Healthcare NHS Trust, The Novo Nordisk Foundation, MRC Centre for Global Infectious Disease Analysis, Community Jameel, Cancer Research UK, Imperial College COVID-19 Research Fund, Medical Research Council, Wellcome Sanger Institute.National Institute for Health Research, Medicines and Healthcare products Regulatory Agency, DeepMind, EPSRC, EA Funds programme, Open Philanthropy, Academy of Medical Sciences Bill,Melinda Gates Foundation, Imperial College Healthcare NHS Trust, The Novo Nordisk Foundation, MRC Centre for Global Infectious Disease Analysis, Community Jameel, Cancer Research UK, Imperial College COVID-19 Research Fund, Medical Research Council, Wellcome Sanger Institute
    • …
    corecore