8,215 research outputs found

    A dynamical collective calculation of supernova neutrino signals

    Full text link
    We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydroynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.Comment: 4 pages, 5 figure

    VHE gamma-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with H.E.S.S

    Full text link
    Supernova remnants (SNRs) are widely considered to be accelerators of cosmic rays (CR). They are also expected to produce very-high-energy (VHE; E>100E > 100 GeV) gamma rays through interactions of high-energy particles with the surrounding medium and photon fields. They are, therefore, promising targets for observations with ground-based imaging atmospheric Cherenkov telescopes like the H.E.S.S. telescope array. VHE gamma-ray emission has already been discovered from a number of SNRs, establishing them as a prominent source class in the VHE domain. Of particular interest are the handful of SNRs whose X-ray spectra are dominated by non-thermal synchrotron emission, such as the VHE gamma-ray emitters RX J0852.0-4622 (Vela Jr.) and RX J1713-3946. The shell-type SNRs G1.9+0.3 and G330.2+1.0 also belong to this subclass and are further notable for their young ages (1\leq 1 kyr), especially G1.9+0.3, which was recently determined to be the youngest SNR in the Galaxy (100\sim100 yr). These unique characteristics motivated investigations with H.E.S.S. to search for VHE gamma rays. The results of the H.E.S.S. observations and analyses are presented, along with implications for potential particle acceleration scenarios.Comment: ICRC 2011 proceedings, 4 pages, 2 figures, 3 table

    Influence of Noise on Force Measurements

    Full text link
    We demonstrate how the ineluctable presence of thermal noise alters the measurement of forces acting on microscopic and nanoscopic objects. We quantify this effect exemplarily for a Brownian particle near a wall subjected to gravitational and electrostatic forces. Our results demonstrate that the force measurement process is prone to artifacts if the noise is not correctly taken into account.Comment: 4 Pages, 4 Figures, Accepte

    Microscopic description of Coulomb and nuclear excitation of multiphonon states in 40^{40}Ca + 40^{40}Ca collisions

    Get PDF
    We calculate the inelastic scattering cross sections to populate one- and two-phonon states in heavy ion collisions with both Coulomb and nuclear excitations. Starting from a microscopic approach based on RPA, we go beyond it in order to treat anharmonicities and non-linear terms in the exciting field. These anharmonicities and non-linearities are shown to have important effects on the cross sections both in the low energy part of the spectrum and in the energy region of the Double Giant Quadrupole Resonance. By properly introducing an optical potential the inelastic cross section is calculated semiclassically by integrating the excitation probability over all impact parameters. A satisfactory agreement with the experimental results is obtained.Comment: 20 pages, 2 figures, revtex, to be published in Phys. Rev.

    Charged-current neutrino-208Pb reactions

    Get PDF
    We present theoretical results on the non flux-averaged 208Pb(νe,e)208Bi^{208}Pb(\nu_{e},e^-)^{208}Bi and 208Pb(νμ,μ)208Bi^{208}Pb(\nu_{\mu},\mu^-)^{208}Bi reaction cross sections, obtained within the charge-exchange Random-Phase-Approximation. A detailed knowledge of these cross sections is important in different contexts. In particular, it is necessary to assess the possibility of using lead as a detector in future experiments on supernova neutrinos, such as OMNIS and LAND, and eventually detect neutrino oscillation signals by exploiting the spectroscopic properties of 208Bi^{208}Bi. We discuss the present status on the theoretical predictions of the reaction cross sections.Comment: 5 pages, latex, 3 figures. added discussion on present status, Submitted to Phys.Rev.

    Multisensory Perception and Learning: Linking Pedagogy, Psychophysics, and Human–Computer Interaction

    Get PDF
    In this review, we discuss how specific sensory channels can mediate the learning of properties of the environment. In recent years, schools have increasingly been using multisensory technology for teaching. However, it still needs to be sufficiently grounded in neuroscientific and pedagogical evidence. Researchers have recently renewed understanding around the role of communication between sensory modalities during development. In the current review, we outline four principles that will aid technological development based on theoretical models of multisensory development and embodiment to foster in-depth, perceptual, and conceptual learning of mathematics. We also discuss how a multidisciplinary approach offers a unique contribution to development of new practical solutions for learning in school. Scientists, engineers, and pedagogical experts offer their interdisciplinary points of view on this topic. At the end of the review, we present our results, showing that one can use multiple sensory inputs and sensorimotor associations in multisensory technology to improve the discrimination of angles, but also possibly for educational purposes. Finally, we present an application, the ‘RobotAngle’ developed for primary (i.e., elementary) school children, which uses sounds and body movements to learn about angles
    corecore