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Abstract. A semi-relativistic approximation of Trubnikov’s dielectric tensor is derived without
making assumptions on the refractive index along and across the ambient magnetic field,N||
andN⊥. The results extend the validity of Shkarofsky’s treatment, previously restricted to quasi-
perpendicular incidence, and permit to handle cases in which Doppler and relativistic widths of
electron cyclotron resonances are comparable. Also, asN⊥ is arbitrary, the proposed approximation
is adequate for Bernstein waves, characterized by largeN⊥. For ease of calculation and to emphasize
the link with previous results, the new tensor is expressed in terms of Shkarofsky functions of shifted
argument and modified width.

Keywords: dielectric tensor, weakly relativistic
PACS: 52.25.Mq , 52.25.Os , 52.27.Ny

INTRODUCTION

Weakly relativistic effects in the propagation and absorption of waves in a magnetized
plasma are typically studied for quasi-perpendicular incidence (N|| � βT), when they
dominate over Doppler broadening, and are described by power series of the finite
Larmor radius parameterλ = (N⊥βT/Y)2/2 [1, 2, 3, 4, 5, 6, 7, 8] or of 1/λ [9, 10, 11],
or expanded in Bessel functions of argumentλ . HereβT =

√
2kBT/mc2 is the thermal

velocity in c units andY = ωc/ω the magnetic field in dimensionless units. All these
approximations, some of which are truncated at the leading order inλ or 1/λ , are
summarized in table 1. We also note that not the wholeε but only an electrostatic
approximation is considered in [9, 10, 11]. Ref.[12] contains the most general result,
although of little practical use, as it is a series in a 4D space multiplied by a sum in 2D.

TABLE 1. Summary of approximations onN‖ and finite Larmor
radius parameterλ in available weakly relativistic dielectric tensors

λ � 1 λ � 1 λ � 1 λ � 1
trunc. trunc.

N‖ = 0 [4, 5]
N‖� βT [1, 2] [3, 6, 7, 8] [10] [9]
arbitr.N‖ [12] [11]

In the case of electron Bernstein waves (EBWs) the smallN⊥ limit is incompatible
with the weakly relativistic limitβT � 1, because for EBWsN⊥ ≈ 1/βT . These waves
also violate theN||� 1 assumption when they are generated via ordinary-extraordinary-
Bernstein (O-X-B) mode conversion of anobliquely injected O-mode [13, 14] or de-
tected byoblique observation of the reverse, B-X-O, process [15, 16]. Besides, even
for other excitation or detection schemes characterized by smallN|| at the antenna, still



EBWs tend to develop largeN|| as a consequence of the largeN⊥ and of the evolution of
the ray in a bent magnetic field [14, 17].

Finite N|| are also important for ion Bernstein waves, and were previously treated
numerically with the aid of root finders [18].

Finally, the (mild) relativistic mass gain is obviously important for electromagnetic
electron cyclotron waves, as it resolves the emission/absorption line. In theN|| � βT
limit, this mechanism dominates over Doppler broadening and is satisfactorily described
by Shkarofsky functions [1]. In the opposite limit, relativistic effects are neglected
and the warm non-relativistic dielectric tensor can be utilized. This includes Doppler
broadening only. The fully relativistic tensor due to Trubnikov [19] embodies both the
broadening mechanisms, thus in principle it suits intermediate angles such thatN|| ≈ βT ,
however it is very complicated and not in a closed form.

Motivated by these considerations, a purely semi-relativistic and relatively easy-to-
compute approximation of Trubnikov’s tensor is derived in the present work without
making any specific assumption onN|| andN⊥.

WEAKLY RELATIVISTIC APPROXIMATION

The steady-state solution of the linearized Vlasov-Maxwell problem for a relativistic,
uniformly magnetized thermal plasma [19] is, in notations similar to [7],

εi j = δi j + iX
1
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whereK2 is the modified Bessel function of the second kind of order 2, also known
as MacDonald function [20],γ =

√
1+u2 is the Lorentz factor andu = p/mc the

normalized momentum.X = ω2
p/ω2 andY = ωc/ω are the adimensional density and

magnetic field. The convention of implicitly summing on repeated indices is adopted.
The tensor

T(1) =

 cosYτ −sinYτ 0
sinYτ cosYτ 0

0 0 1

 (2)

defines a rotation of the reference frame at angular frequency equal to the gyrofre-
quencyωc around the field-aligned axisz. The remaining axes are chosen to yield
N = (N⊥,0,N||). The timeτ is renormalized to the wave periodω−1. Finally,

Nx =
1
Y

N⊥ sinYτ Ny =
1
Y

N⊥(cosYτ−1) Nz = N||τ (3)

All parameters and independent variables in integral eq.1 are real, apart from the
refractive index components. These are complex, withℜ(N⊥) ≥ 0, ℑ(N⊥) ≤ 0 and
ℑ(N||)≤ 0, i.e. waves’ amplitude cannot grow.

Let us Taylor-expandγ up to the second order inu. Apart from a factor, the integral
in eq.1 rewrites: ∫ ∞

0
dτeiτT(1)

jk
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d3uuiuk(2−u2

x−u2
y−u2

z)ExEyEz (4)



where
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]
(5)

and equivalent definitions apply toEy andEz.
The main advantage of eq.4 over eq.1 is that the parallel and perpendicular degree of

freedom, which were previously coupled byγ, are now decoupled. The approximation
of γ−1 with a sum and of the exponent with a product of functions ofux, uy or uz only,
ease the integration overu. In fact, this reduces to a sum of products of integrals of type:∫ ∞

−∞
duxe

−iNxux−bu2
x =

√
π

b
e−N 2

x /4b (6)

and its derivatives up to the 4th order inNx. Similar integrals inuy anduz, as well as
their derivatives, are also involved. In the integrals above, the real part of

b =
1

β 2
T

− i
τ

2
(7)

is positive, of course. After some algebra,
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where
Qi j = T(1)
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andT(2)
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jk Nk is the tensor
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For very smallβT , the Lorentz factor can be further approximated in the 2−u2
x−u2

y−
u2

z ' 2 factor in eq.4, which is a weak function ofu, compared to the exponent, where
the second order approximation will be kept. Then eq.9 becomes:

Qi j = (T(1)
ji 2b−T(2)

i j )8b2 (11)

An alternative way of deriving eq.8 consists in taking the mildly relativistic limit of
the relativistic dielectric tensor (eq.1) integrated over momenta [19]:
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where asymptotic limits can be used for the modified Bessel functions as their argument
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diverges. Finally, truncating at the 2nd order inN and at the two lowest orders in 1/b
returns eq.8.

After the change of variablesβ 2
Tτ/2→ t andY = β 2

Ty/2 and after expanding
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with the double sum restricted to even values ofm+ n, all integrals in eq.8 can be

brought into the form

−i
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where the definition of generalized Shkarofsky functions [21, 22, 23]
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∫ ∞

0

(it )r

(1− it )q exp

[
izt− at2

1− it

]
dt, (16)

was invoked and dispersion was found to depend on Larmor radius, in agreement
with relativistic eq.1. A correction to generalized Shkarofsky functions arises in the
form of a shift of argumentsz anda by an amountλ . Such a linear perturbation can
be interpreted as a finite-Larmor-radius correction to the resonance condition (through
z = 2(nY+ 1)/β 2

T) and to its width in inhomogenoeus plasmas, through the ratio of
Doppler to relativistic width,a = N||/βT . The physical meaning ofz→ z− λ is the
well-known relativistic downshift.

Putting together eqs.8-14 and, for consistency with earlier weakly relativistic approx-
imations, the asymptotic limit
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yields the following expression for the slightly relativistic dielectric tensor:
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where, as usual, the summation is restricted to even values ofm+n and
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MoreoverQmn,21 =−Qmn,12, Qmn,31 = Qmn,13 andQmn,32 =−Qmn,23.
This was forQi j as in eq.11. However, if eq.9 is used instead, one has to add:
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Powers ofβ 2
T up to the 1st order were retained here for consistency with eq.19-

24. Arguments were omitted for brevity from generalized Shkarofsky functions and
summarized by an index for the harmonic number:

Fq,r,n = Fq,r

(
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Additionally, the compact notations

F+
q,r,n±p = Fq,r,n+p +Fq,r,n−p F−

q,r,n±p = Fq,r,n+p−Fq,r,n−p (34)

were employed for some frequently occurring sums and differences.
At this point it should be remembered that it is customary to treat as a constant the

Lorentz factorγ at denominator in the integrand of eq.1 and to Taylor-expand only the
exponent, on the ground that relativistic corrections at denominator have a comparatively
small effect on the integral. This is equivalent to use eq.11 instead of eq.9 and, ultimately,
to neglect corrections 25-32 to eqs.19-24, which is not always legitimate. It is only partly
legitimate for those elements which becomeO(β 4

T) under the assumptionN|| � βT
which, by the way, was not adopted in the present work.

Note also that simple Shkarofsky functions ofr = 0 appear in most functionsQmn,i j .
The double sum in eq.18 might look computationally expensive, but functionsF of

differentq (thus,Q of differentm) can recursively be related to one another [2, 3, 8, 22,



24]. Besides, for relativistically broadened but well-resolved lines, the double sum can
be restricted to diagonal terms (m= n).

An alternative form of eq.18 can be obtained by recognizing, in the sum overm in
eq.14, the generating function for the modified Bessel function of the first kind:
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This generalizes an identity utilized in deriving the warm non-relativistic dielectric
tensor [25]. However, it does so by replacingλ with λ/(1− it ), i.e. by introducing a
time dependence forIn that cannot be factored out of the time integral anymore. As a
consequence, integrals in
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are more complicated than eq.15. On the other hand, they avoid the nuisance of the
double sum and can be useful when a highm is required for convergence.

In summary a novel formulation of the semi-relativistic dielectric tensor valid for
arbitrary wavenumbers was derived starting from Trubnikov’s fully relativistic tensor.
The new tensor describes the propagation (including electrostatic propagation based on
finite Larmor radius effects) and damping (corrected for relativistic effects and Doppler
broadening) of modes of arbitrary orientation relative to the magnetic field, including
the Bernstein mode.
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