5 research outputs found

    Developing students’ intercultural communicative competence in foreign language classroom

    Get PDF
    Current social and economic changes have significantly influenced the tourism industry worldwide turning it into a diversified sphere of activity aimed at servicing tourists and meeting their needs. As tourist travels continue to grow throughout the world, they cause extensive cross-cultural contacts between different language and cultural groups. Thus, higher educational establishments of tourism profile have an important task to train competent specialists able to interact effectively at the intercultural level. In our article, based on the experience of teaching master’s degree students majoring in international tourism at Lviv Polytechnic National University, we analysed possibilities of ICC development in ESP classes by means of flipped classroom method, role plays, discussions and a special course β€œCross-cultural communication in religious tourism” designed by the authors. As shown by the results of our study, the methods and resources used in our ESP classes may be particularly appropriate for the development of students’ ICC because they provide the basis for intercultural communication, ensure the link between the learning and real life and thus make the development of ICC more meaningful to learners

    ДослідТСння Π²ΠΏΠ»ΠΈΠ²Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–Π² Π½Π°Π΄Π½ΠΈΠ·ΡŒΠΊΠΎΡ— інтСнсивності Π½Π° Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΎΠ±'Ρ”ΠΊΡ‚ΠΈ

    No full text
    The object of research is the efficiency of exposure to electromagnetic field (EMF) of ultra-low intensity on biological objects, which is formed by a generator of broadband radiation. The principle of action of the generator is based on formation of electromagnetic radiation induced by periodic pulsed gas discharge in coaxial system of electrodes, which is loaded on a dielectric rod antenna. The method of selection of signals and corresponding equipment, which energy characteristics of radiation correspond to the criterion of non-thermal influence on bioobjects, is developed for obtaining a comparative assessment of influence bioefficiency. The proposed new method for processing experimental data using statistical calculations that meet the requirements for the processing and interpretation of the results. The seeds of wheat and interaction of millimeter range electromagnetic oscillations with bone marrow cells of rats were used as biological objects for investigating the effect of millimeter range electromagnetic oscillations. A biosensory effect was obtained when exposed to broadband radiation of ultra-low intensity, compared to the control sample. A change in the properties of the seeds, in particular, heat resistance, is observed. According to the experimental data, seeds turn out to be less susceptible to heat as a result of their pretreatment with EMF. The biological response is observed to depend on the frequency and time of irradiation. Also, the dependence of the decrease in the number of dead cells on the time of EMF irradiation was experimentally proved. The equation of dependence of selective average proportion of dead cells in rat bone marrow on irradiation time was calculated. Biosensory effect of exposure to broadband ultra-low intensity EMF of the developed emitter was revealed. It was established and statistically proved that the minimum time with the maximum positive effect of exposure to electromagnetic radiation of millimeter range on bone marrow cells of rats is 30 minutes, compared with an unirradiated sample. The results make it possible to evaluate the positive effect of electromagnetic oscillations on biological objects and propose the results of studies for practical use in the development of medical systems.ΠžΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ исслСдования являСтся ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ воздСйствия элСктромагнитного поля (ЭМП) ΡƒΠ»ΡŒΡ‚Ρ€Π°Π½ΠΈΠ·ΠΊΠΎΠΉ интСнсивности Π½Π° биологичСскиС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ (Π‘Πž), ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ формируСтся Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ излучСния. ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ дСйствия Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π° базируСтся Π½Π° Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ элСктромагнитного излучСния, Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ пСриодичСским ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹ΠΌ Π³Π°Π·ΠΎΠ²Ρ‹ΠΌ разрядом Π² коаксиальной систСмС элСктродов, Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½Ρ‹ΠΉ Π½Π° Π΄ΠΈΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΡΡ‚Π΅Ρ€ΠΆΠ½Π΅Π²ΡƒΡŽ Π°Π½Ρ‚Π΅Π½Π½Ρƒ. Для получСния ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ биоэффСктивности воздСйствия Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π²Ρ‹Π±ΠΎΡ€Π° сигналов ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, энСргСтичСскиС характСристики излучСния ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ Π½Π΅Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ воздСйствия Π½Π° Π±ΠΈΠΎΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… экспСримСнта с использованиСм статистичСских расчСтов, ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‰ΠΈΠΉ трСбованиям ΠΏΠΎ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². Π’ качСствС биологичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² исслСдования влияния элСктромагнитных ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ сСмСна ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ ΠΈ взаимодСйствиС элСктромагнитных ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° с ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ костного ΠΌΠΎΠ·Π³Π° крыс. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ биосСнсорный эффСкт ΠΏΡ€ΠΈ воздСйствии ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ излучСния свСрхнизкой интСнсивности, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΎΠΉ. ΠΠ°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ свойств сСмян, Π² частности, Ρ‚Π΅ΠΏΠ»ΠΎΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ. Богласно ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ сСмСна ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΌΠ΅Π½Π΅Π΅ ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Π½Ρ‹ΠΌΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ Ρ‚Π΅ΠΏΠ»Π° Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΈΡ… ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ЭМП. ΠΠ°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ биологичСского ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° ΠΎΡ‚ частоты ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ облучСния. Π’Π°ΠΊΠΆΠ΅ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ количСства ΠΌΠ΅Ρ€Ρ‚Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ облучСния ЭМП. Рассчитано ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ зависимости Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ срСднСй Π΄ΠΎΠ»ΠΈ ΠΌΠ΅Ρ€Ρ‚Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ костного ΠΌΠΎΠ·Π³Π° крыс ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ облучСния.ВыявлСн биосСнсорный эффСкт ΠΏΡ€ΠΈ воздСйствии ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ ЭМП свСрхнизкой интСнсивности Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ излучатСля. УстановлСно ΠΈ статистичСски Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ минимальноС врСмя с ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ эффСктом воздСйствия элСктромагнитным ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° (Π­MИ ΠœΠœΠ”) Π½Π° ΠΊΠ»Π΅Ρ‚ΠΊΠΈ костного ΠΌΠΎΠ·Π³Π° крыс составляСт 30 ΠΌΠΈΠ½ΡƒΡ‚, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π½Π΅ΠΎΠ±Π»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠΌ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ влияниС элСктромагнитных ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π½Π° Π‘Πž ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований для практичСского использования ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ мСдицинских систСм.ΠžΠ±β€™Ρ”ΠΊΡ‚ΠΎΠΌ дослідТСння Ρ” Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π²ΠΏΠ»ΠΈΠ²Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΎΠ³ΠΎ поля (Π•ΠœΠŸ) Π½Π°Π΄Π½ΠΈΠ·ΡŒΠΊΠΎΡ— інтСнсивності Π½Π° Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΎΠ±'Ρ”ΠΊΡ‚ΠΈ (Π‘Πž), якС Ρ„ΠΎΡ€ΠΌΡƒΡŽΡ”Ρ‚ΡŒΡΡ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ ΡˆΠΈΡ€ΠΎΠΊΠΎΡΠΌΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ. ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ Π΄Ρ–Ρ— Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Ρƒ Π±Π°Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° Ρ„ΠΎΡ€ΠΌΡƒΠ²Π°Π½Π½Ρ– Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΎΠ³ΠΎ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ, Π·Π±ΡƒΠ΄ΠΆΠ΅Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Ρ–ΠΎΠ΄ΠΈΡ‡Π½ΠΈΠΌ Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΈΠΌ Π³Π°Π·ΠΎΠ²ΠΈΠΌ розрядом Π² ΠΊΠΎΠ°ΠΊΡΡ–Π°Π»ΡŒΠ½Ρ–ΠΉ систСмі Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Ρ–Π², Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½ΠΈΠΉ Π½Π° Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Ρƒ стирТнСву Π°Π½Ρ‚Π΅Π½Ρƒ. Для отримання ΠΏΠΎΡ€Ρ–Π²Π½ΡΠ»ΡŒΠ½ΠΎΡ— ΠΎΡ†Ρ–Π½ΠΊΠΈ біоСфСктивності Π²ΠΏΠ»ΠΈΠ²Ρƒ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π²ΠΈΠ±ΠΎΡ€Ρƒ сигналів Ρ– Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎΡ— Π°ΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€ΠΈ, Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½Ρ– характСристики Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ якої Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°ΡŽΡ‚ΡŒ ΠΊΡ€ΠΈΡ‚Π΅Ρ€Ρ–ΡŽ Π½Π΅Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ Π½Π° Π±Ρ–ΠΎΠΎΠ±'Ρ”ΠΊΡ‚ΠΈ. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ Π½ΠΎΠ²ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ Π΄Π°Π½ΠΈΡ… СкспСримСнту Π· використанням статистичних Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡ–Π², який Π²iΠ΄ΠΏΠΎΠ²iΠ΄Π°Ρ” Π²ΠΈΠΌΠΎΠ³Π°ΠΌ Ρ‰ΠΎΠ΄ΠΎ ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ Ρ‚Π° iΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†Ρ–Ρ— Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π². Π’ якості Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… ΠΎΠ±'Ρ”ΠΊΡ‚Ρ–Π² дослідТСння Π²ΠΏΠ»ΠΈΠ²Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΡ… коливань ΠΌΡ–Π»Ρ–ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρƒ використано насіння ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ– Ρ‚Π° взаємодія Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΡ… коливань ΠΌΡ–Π»Ρ–ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρƒ Ρ–Π· ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ кісткового ΠΌΠΎΠ·ΠΊΡƒ Ρ‰ΡƒΡ€Ρ–Π². ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ біосСнсорний Π΅Ρ„Π΅ΠΊΡ‚ ΠΏΡ€ΠΈ Π²ΠΏΠ»ΠΈΠ²Ρ– ΡˆΠΈΡ€ΠΎΠΊΠΎΡΠΌΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ Π½Π°Π΄Π½ΠΈΠ·ΡŒΠΊΠΎΡ— інтСнсивності, Π² порівнянні Π· ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΡŽ Π²ΠΈΠ±Ρ–Ρ€ΠΊΠΎΡŽ. Π‘ΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°Ρ”Ρ‚ΡŒΡΡ Π·ΠΌΡ–Π½Π° властивостСй насіння, Π·ΠΎΠΊΡ€Π΅ΠΌΠ°, Ρ‚Π΅ΠΏΠ»ΠΎΡΡ‚Ρ–ΠΉΠΊΡ–ΡΡ‚ΡŒ. Π—Π³Ρ–Π΄Π½ΠΎ Π· Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΠΌΠΈ Π΄Π°Π½ΠΈΠΌΠΈ насіння Π²ΠΈΡΠ²Π»ΡΡ”Ρ‚ΡŒΡΡ мСнш ΡΡ…ΠΈΠ»ΡŒΠ½ΠΈΠΌ Π΄ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ Ρ‚Π΅ΠΏΠ»Π° Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– Ρ—Ρ… ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡ— ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ Π•ΠœΠŸ. Π‘ΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°Ρ”Ρ‚ΡŒΡΡ Π·Π°Π»Π΅ΠΆΠ½Ρ–ΡΡ‚ΡŒ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ Π²Ρ–Π΄Π³ΡƒΠΊΡƒ Π²Ρ–Π΄ частоти Ρ‚Π° часу опромінСння. Π’Π°ΠΊΠΎΠΆ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ Π΄ΠΎΠ²Π΅Π΄Π΅Π½Π° Π·Π°Π»Π΅ΠΆΠ½Ρ–ΡΡ‚ΡŒ змСншСння ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚i ΠΌΠ΅Ρ€Ρ‚Π²ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ Π²Ρ–Π΄ часу опромінСння EMП. Π ΠΎΠ·Ρ€Π°Ρ…ΠΎΠ²Π°Π½ΠΎ рівняння залСТності Π²ΠΈΠ±Ρ–Ρ€ΠΊΠΎΠ²ΠΎΡ— ΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡ— частки ΠΌΠ΅Ρ€Ρ‚Π²ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ кісткового ΠΌΠΎΠ·ΠΊΡƒ Ρ‰ΡƒΡ€Ρ–Π² Π²Ρ–Π΄ часу опромінСння. ВиявлСно біосСнсорний Π΅Ρ„Π΅ΠΊΡ‚ ΠΏΡ€ΠΈ Π²ΠΏΠ»ΠΈΠ²Ρ– ΡˆΠΈΡ€ΠΎΠΊΠΎΡΠΌΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ Π•ΠœΠŸ Π½Π°Π΄Π½ΠΈΠ·ΡŒΠΊΠΎΡ— інтСнсивності Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎΠ³ΠΎ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Ρ‡Π°. ВстановлСно Ρ‚Π° статистично Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΈΠΉ час Π· максимальним ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΠΌ Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠΌ Π²ΠΏΠ»ΠΈΠ²Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΠΌ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½ΡΠΌ ΠΌΡ–Π»Ρ–ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρƒ (EMB ΠœΠœΠ”) Π½Π° ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ кісткового ΠΌΠΎΠ·ΠΊΡƒ Ρ‰ΡƒΡ€Ρ–Π² ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ 30 Ρ…Π²ΠΈΠ»ΠΈΠ½, Π² порівнянні Π· Π½Π΅ΠΎΠΏΡ€ΠΎΠΌΡ–Π½Π΅Π½ΠΈΠΌ Π·Ρ€Π°Π·ΠΊΠΎΠΌ. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ ΠΎΡ†Ρ–Π½ΠΈΡ‚ΠΈ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΡ… коливань Π½Π° Π‘Πž Ρ‚Π° Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΡƒΠ²Π°Ρ‚ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ для ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ використання ΠΏΡ€ΠΈ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Ρ†Ρ– ΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… систСм

    Study of the Effects of Ultra-low Intensity Electromagnetic Fields on Biological Objects

    Full text link
    The object of research is the efficiency of exposure to electromagnetic field (EMF) of ultra-low intensity on biological objects, which is formed by a generator of broadband radiation. The principle of action of the generator is based on formation of electromagnetic radiation induced by periodic pulsed gas discharge in coaxial system of electrodes, which is loaded on a dielectric rod antenna. The method of selection of signals and corresponding equipment, which energy characteristics of radiation correspond to the criterion of non-thermal influence on bioobjects, is developed for obtaining a comparative assessment of influence bioefficiency. The proposed new method for processing experimental data using statistical calculations that meet the requirements for the processing and interpretation of the results. The seeds of wheat and interaction of millimeter range electromagnetic oscillations with bone marrow cells of rats were used as biological objects for investigating the effect of millimeter range electromagnetic oscillations. A biosensory effect was obtained when exposed to broadband radiation of ultra-low intensity, compared to the control sample. A change in the properties of the seeds, in particular, heat resistance, is observed. According to the experimental data, seeds turn out to be less susceptible to heat as a result of their pretreatment with EMF. The biological response is observed to depend on the frequency and time of irradiation. Also, the dependence of the decrease in the number of dead cells on the time of EMF irradiation was experimentally proved. The equation of dependence of selective average proportion of dead cells in rat bone marrow on irradiation time was calculated. Biosensory effect of exposure to broadband ultra-low intensity EMF of the developed emitter was revealed. It was established and statistically proved that the minimum time with the maximum positive effect of exposure to electromagnetic radiation of millimeter range on bone marrow cells of rats is 30 minutes, compared with an unirradiated sample. The results make it possible to evaluate the positive effect of electromagnetic oscillations on biological objects and propose the results of studies for practical use in the development of medical systems

    Π ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° ΠΌΠ΅Ρ‚Π°ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– для визначСння ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— Π±Ρ–Π»ΠΊΠ° Π² Π΅Π½Π·ΠΈΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ–ΠΉ Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉΠ½Ρ–ΠΉ ΡΡƒΠΌΡ–ΡˆΡ–

    No full text
    In the paper a standard multiwell plate structure was utilized to determine the concentration of human serum albumin in water solutions and enzymatic reaction mixtures. This study marks the first application of the multiwell plate structure as a resonant metasurface unit cell through numerical simulation using the COMSOL Multiphysics software. By adjusting the operating parameters of the proposed multiwell plate (MWP) metasurface, resonance phenomena within the microwave range could be observed. The complex permittivity (CP) values of the tested solutions, obtained experimentally using the microwave dielectrometry method, were employed for the MWP metasurface modelling. The correspondence between the resonance frequency shifts of the MWP metasurface and the changes in CP values of the tested solutions was demonstrated. For the convenience of the protein concentration determination, the concentration calibration graph was proposed. Our approach enables the detection of protein concentration in the reaction mixture after 60 minutes duration of the enzymatic reaction course. The study demonstrated the customization of metasurface dimensions to enable interaction with electromagnetic waves at specific frequencies. The availability of standard multiwell plates in different sizes allows for testing solutions across various frequency ranges.Π£ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– використано стандартну структуру Π±Π°Π³Π°Ρ‚ΠΎΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚Π° для визначСння ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— сироваткового Π°Π»ΡŒΠ±ΡƒΠΌΡ–Π½Ρƒ людини Ρƒ Π²ΠΎΠ΄Π½ΠΈΡ… Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Π°Ρ… Ρ‚Π° Π΅Π½Π·ΠΈΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉΠ½ΠΈΡ… ΡΡƒΠΌΡ–ΡˆΠ°Ρ…. Π¦Π΅ дослідТСння являє собою ΠΏΠ΅Ρ€ΡˆΠ΅ застосування структури Π±Π°Π³Π°Ρ‚ΠΎΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚Π° як рСзонансної ΠΌΠ΅Ρ‚Π°ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΡ— ΠΊΠΎΠΌΡ–Ρ€ΠΊΠΈ Π·Π° допомогою Ρ‡ΠΈΡΠ΅Π»ΡŒΠ½ΠΎΠ³ΠΎ модСлювання Π· використанням ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎΠ³ΠΎ забСзпСчСння COMSOL Multiphysics. Π Π΅Π³ΡƒΠ»ΡŽΡŽΡ‡ΠΈ Ρ€ΠΎΠ±ΠΎΡ‡Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΡ— ΠΌΠ΅Ρ‚Π°ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π±Π°Π³Π°Ρ‚ΠΎΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚Π°, ΠΌΠΎΠΆΠ½Π° Π±ΡƒΠ»ΠΎ спостСрігати рСзонансні явища Π² ΠΌΡ–ΠΊΡ€ΠΎΡ…Π²ΠΈΠ»ΡŒΠΎΠ²ΠΎΠΌΡƒ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ–. ЗначСння комплСксної Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— проникності дослідТуваних Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π², ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ Π·Π° допомогою ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠΌΡ–ΠΊΡ€ΠΎΡ…Π²ΠΈΠ»ΡŒΠΎΠ²ΠΎΡ— Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ—, Π±ΡƒΠ»ΠΈ використані для модСлювання ΠΌΠ΅Ρ‚Π°ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ–. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΎΠ²Π°Π½ΠΎ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½Ρ–ΡΡ‚ΡŒ ΠΌΡ–ΠΆ зсувами рСзонансної частоти ΠΌΠ΅Ρ‚Π°ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚Π° Π·ΠΌΡ–Π½Π°ΠΌΠΈ Π·Π½Π°Ρ‡Π΅Π½ΡŒ комплСксної Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— проникності дослідТуваних Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π². Для визначСння ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— Π±Ρ–Π»ΠΊΠ° Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΠΊΠ°Π»Ρ–Π±Ρ€ΡƒΠ²Π°Π»ΡŒΠ½ΠΈΠΉ Π³Ρ€Π°Ρ„Ρ–ΠΊ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ—. Наш ΠΏΡ–Π΄Ρ…Ρ–Π΄ дозволяє Π²ΠΈΠ·Π½Π°Ρ‡Π°Ρ‚ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–ΡŽ Π±Ρ–Π»ΠΊΠ° Π² Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉΠ½Ρ–ΠΉ ΡΡƒΠΌΡ–ΡˆΡ– після 60-Ρ…Π²ΠΈΠ»ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Π±Ρ–Π³Ρƒ Π΅Π½Π·ΠΈΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΡ— Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ—. ДослідТСння продСмонструвало ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Π½Π°Π»Π°ΡˆΡ‚ΡƒΠ²Π°Π½Π½Ρ Ρ€ΠΎΠ·ΠΌΡ–Ρ€Ρ–Π² ΠΌΠ΅Ρ‚Π°ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– для забСзпСчСння Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π· Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΠΌΠΈ хвилями Π½Π° ΠΏΠ΅Π²Π½ΠΈΡ… частотах. ΠΠ°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ стандартних Π±Π°Π³Π°Ρ‚ΠΎΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΈΡ… ΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚Ρ–Π² Ρ€Ρ–Π·Π½ΠΈΡ… Ρ€ΠΎΠ·ΠΌΡ–Ρ€Ρ–Π² дозволяє тСстувати Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ΠΈ Π² Ρ€Ρ–Π·Π½ΠΈΡ… частотних Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Π°Ρ…
    corecore