316 research outputs found

    Circadian Oscillations of Protein-Coding and Regulatory RNAs in a Highly Dynamic Mammalian Liver Epigenome

    Get PDF
    SummaryIn the mouse liver, circadian transcriptional rhythms are necessary for metabolic homeostasis. Whether dynamic epigenomic modifications are associated with transcript oscillations has not been systematically investigated. We found that several antisense RNA, lincRNA, and microRNA transcripts also showed circadian oscillations in adult mouse livers. Robust transcript oscillations often correlated with rhythmic histone modifications in promoters, gene bodies, or enhancers, although promoter DNA methylation levels were relatively stable. Such integrative analyses identified oscillating expression of an antisense transcript (asPer2) to the gene encoding the circadian oscillator component Per2. Robust transcript oscillations often accompanied rhythms in multiple histone modifications and recruitment of multiple chromatin-associated clock components. Coupling of cycling histone modifications with nearby oscillating transcripts thus established a temporal relationship between enhancers, genes, and transcripts on a genome-wide scale in a mammalian liver. The results offer a framework for understanding the dynamics of metabolism, circadian clock, and chromatin modifications involved in metabolic homeostasis

    High-rate Li-MnO2 cells for aerospace use

    Get PDF
    A series of comparative studies were undertaken on representative cells as objectively as possible in order to appreciate the respective advantages of the different systems. After reviewing the first test results our attention was soon focussed on the following four lithium systems: (1) Li-SOCl2; (2) Li-SO2; (3) Li-(CF(sub x))(sub n); and (4) Li-MnO2. This resulted in the decision in 1982 to adopt the Li-MnO2 system for high-rate applications

    Fatal affairs - conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacterales

    Get PDF
    The roseobacter group of marine bacteria is characterized by a mosaic distribution of ecologically important phenotypes. These are often encoded on mobile extrachromosomal replicons. So far, conjugation had only been experimentally proven between the two model organisms Phaeobacter inhibens and Dinoroseobacter shibae. Here, we show that two large natural RepABC-type plasmids from D. shibae can be transferred into representatives of all known major Rhodobacterales lineages. Complete genome sequencing of the newly established Phaeobacter inhibens transconjugants confirmed their genomic integrity. The conjugated plasmids were stably maintained as single copy number replicons in the genuine as well as the new host. Co-cultivation of Phaeobacter inhibens and the transconjugants with the dinoflagellate Prorocentrum minimum demonstrated that Phaeobacter inhibens is a probiotic strain that improves the yield and stability of the dinoflagellate culture. The transconjugant carrying the 191 kb plasmid, but not the 126 kb sister plasmid, killed the dinoflagellate in co-culture

    Nocardia macrotermitis sp. nov. and Nocardia aurantia sp. nov., isolated from the gut of the fungus-growing termite Macrotermes natalensis

    Get PDF
    The taxonomic positions of two novel aerobic, Gram-stain-positive Actinobacteria, designated RB20T^{T} and RB56T^{T}, were determined using a polyphasic approach. Both were isolated from the fungus-farming termite Macrotermes natalensis. Results of 16S rRNA gene sequence analysis revealed that both strains are members of the genus Nocardia with the closest phylogenetic neighbours Nocardia miyunensis JCM12860T^{T} (98.9 %) and Nocardia nova DSM44481T^{T} (98.5 %) for RB20T^{T} and Nocardia takedensis DSM 44801T^{T} (98.3 %), Nocardia pseudobrasiliensis DSM 44290T^{T} (98.3 %) and Nocardia rayongensis JCM 19832T^{T} (98.2 %) for RB56T^{T}. Digital DNA–DNA hybridization (DDH) between RB20T^{T} and N. miyunensis JCM12860T^{T} and N. nova DSM 44481T^{T} resulted in similarity values of 33.9 and 22.0 %, respectively. DDH between RB56T^{T} and N. takedensis DSM44801T^{T} and N. pseudobrasiliensis DSM44290T^{T} showed similarity values of 20.7 and 22.3 %, respectively. In addition, wet-lab DDH between RB56T^{T} and N. rayongensis JCM19832T^{T} resulted in 10.2 % (14.5 %) similarity. Both strains showed morphological and chemotaxonomic features typical for the genus Nocardia , such as the presence of meso-diaminopimelic acid (A2_{2}pm) within the cell wall, arabinose and galactose as major sugar components within whole cell-wall hydrolysates, the presence of mycolic acids and major phospholipids (diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol), and the predominant menaquinone MK-8 (H4, ω-cyclo). The main fatty acids for both strains were hexadecanoic acid (C16:0_{16 : 0}), 10-methyloctadecanoic acid (10-methyl C18:0_{18 : 0}) and cis-9-octadecenoic acid (C18:1_{18 : 1} ω9c). We propose two novel species within the genus Nocardia : Nocardia macrotermitis sp. nov. with the type strain RB20T^{T} (=VKM Ac-2841T^{T}=NRRL B65541T^{T}) and Nocardia aurantia sp. nov. with the type strain RB56T^{T} (=VKM Ac-2842T^{T}=NRRL B65542T^{T})

    Comparative Genomics and Mutational Analysis Reveals a Novel XoxF-Utilizing Methylotroph in the Roseobacter Group Isolated From the Marine Environment

    Get PDF
    The Roseobacter group comprises a significant group of marine bacteria which are involved in global carbon and sulfur cycles. Some members are methylotrophs, using one-carbon compounds as a carbon and energy source. It has recently been shown that methylotrophs generally require a rare earth element when using the methanol dehydrogenase enzyme XoxF for growth on methanol. Addition of lanthanum to methanol enrichments of coastal seawater facilitated the isolation of a novel methylotroph in the Roseobacter group: Marinibacterium anthonyi strain La 6. Mutation of xoxF5 revealed the essential nature of this gene during growth on methanol and ethanol. Physiological characterization demonstrated the metabolic versatility of this strain. Genome sequencing revealed that strain La 6 has the largest genome of all Roseobacter group members sequenced to date, at 7.18 Mbp. Multilocus sequence analysis (MLSA) showed that whilst it displays the highest core gene sequence similarity with subgroup 1 of the Roseobacter group, it shares very little of its pangenome, suggesting unique genetic adaptations. This research revealed that the addition of lanthanides to isolation procedures was key to cultivating novel XoxF-utilizing methylotrophs from the marine environment, whilst genome sequencing and MLSA provided insights into their potential genetic adaptations and relationship to the wider community

    A marine plasmid hitchhiking vast phylogenetic and geographic distances

    Get PDF
    Horizontal gene transfer (HGT) plays an important role in bacterial evolution and serves as a driving force for bacterial diversity and versatility. HGT events often involve mobile genetic elements like plasmids, which can promote their own dissemination by associating with adaptive traits in the gene pool of the so-called mobilome. Novel traits that evolve through HGT can therefore lead to the exploitation of new ecological niches, prompting an adaptive radiation of bacterial species. In this study, we present phylogenetic, biogeographic, and functional analyses of a previously unrecognized RepL-type plasmid found in diverse members of the marine Roseobacter group across the globe. Noteworthy, 100% identical plasmids were detected in phylogenetically and geographically distant bacteria, revealing a so-far overlooked, but environmentally highly relevant vector for HGT. The genomic and functional characterization of this plasmid showed a completely conserved backbone dedicated to replication, stability, and mobilization as well as an interchangeable gene cassette with highly diverse, but recurring motifs. The majority of the latter appear to be involved in mechanisms coping with toxins and/or pollutants in the marine environment. Furthermore, we provide experimental evidence that the plasmid has the potential to be transmitted across bacterial orders, thereby increasing our understanding of evolution and microbial niche adaptation in the environment

    Paramagnetic signature of microcrystalline silicon carbide

    Get PDF
    Abstract. The most important challenge on the way to optimized solar cells is to make the thickness of the individual layers smaller than the diffusion length of the charge carriers, in order to keep the collection efficiency close to unity. Here, we propose ß-SiC microcrystals grown by a sol-gel based process as a promising acceptor material. The samples are characterized by optical spectroscopy and electron paramagnetic resonance (EPR). With the help of band structures for selected surface states calculated in the framework of density functional theory (DFT) a possible scenario for the observed acceptor process is discussed

    Serum tumor markers in pediatric osteosarcoma: a summary review

    Get PDF
    Osteosarcoma is the most common primary high-grade bone tumor in both adolescents and children. Early tumor detection is key to ensuring effective treatment. Serum marker discovery and validation for pediatric osteosarcoma has accelerated in recent years, coincident with an evolving understanding of molecules and their complex interactions, and the compelling need for improved pediatric osteosarcoma outcome measures in clinical trials. This review gives a short overview of serological markers for pediatric osteosarcoma, and highlights advances in pediatric osteosarcoma-related marker research within the past year. Studies in the past year involving serum markers in patients with pediatric osteosarcoma can be assigned to one of four categories, i.e., new approaches and new markers, exploratory studies in specialized disease subsets, large cross-sectional validation studies, and longitudinal studies, with and without an intervention
    corecore