66 research outputs found

    Microscopic picture of aging in SiO2

    Get PDF
    We investigate the aging dynamics of amorphous SiO2 via molecular dynamics simulations of a quench from a high temperature T_i to a lower temperature T_f. We obtain a microscopic picture of aging dynamics by analyzing single particle trajectories, identifying jump events when a particle escapes the cage formed by its neighbors, and by determining how these jumps depend on the waiting time t_w, the time elapsed since the temperature quench to T_f. We find that the only t_w-dependent microscopic quantity is the number of jumping particles per unit time, which decreases with age. Similar to previous studies for fragile glass formers, we show here for the strong glass former SiO2 that neither the distribution of jump lengths nor the distribution of times spent in the cage are t_w-dependent. We conclude that the microscopic aging dynamics is surprisingly similar for fragile and strong glass formers.Comment: 4 pages, 7 figure

    Self-Organized Criticality Below The Glass Transition

    Full text link
    We obtain evidence that the dynamics of glassy systems below the glass transition is characterized by self-organized criticality. Using molecular dynamics simulations of a model glass-former we identify clusters of cooperatively jumping particles. We find string-like clusters whose size is power-law distributed not only close to T_c but for ALL temperatures below T_c, indicating self-organized criticality which we interpret as a freezing in of critical behavior.Comment: 4 pages, 3 figure

    Aging to Equilibrium Dynamics of SiO2

    Get PDF
    Molecular dynamics computer simulations are used to study the aging dynamics of SiO2 (modeled by the BKS model). Starting from fully equilibrated configurations at high temperatures T_i =5000K/3760K the system is quenched to lower temperatures T_f=2500K, 2750K, 3000K, 3250K and observed after a waiting time t_w. Since the simulation runs are long enough to reach equilibrium at T_f, we are able to study the transition from out-of-equilibrium to equilibrium dynamics. We present results for the partial structure factors, for the generalized incoherent intermediate scattering function C_q(t_w, t_w+t), and for the mean square displacement msd(t_w,t_w+t). We conclude that there are three different t_w regions: (I) At very short waiting times, C_q(t_w, t_w+t) decays very fast without forming a plateau. Similarly msd(t_w,t_w+t) increases without forming a plateau. (II) With increasing t_w a plateau develops in C_q(t_w, t_w+t) and msd(t_w,t_w+t). For intermediate waiting times the plateau height is independent of t_w and T_i. Time superposition applies, i.e. C_q=C_q(t/t_r) where t_r=t_r(t_w) is a waiting time dependent decay time. Furthermore C_q=C(q,t_w,t_w+t) scales as C_q=C(q,z(t_w,t) where z is a function of t_w and t only, i.e. independent of q. (III) At large t_w the system reaches equilibrium, i.e. C_q(t_w,t_w+t) and msd(t_w,t_w+t) are independent of t_w and T_i. For C_q(t_w,t_w+t) we find that the time superposition of intermediate waiting times (II) includes the equilibrium curve (III).Comment: 9 pages, 11 figures, submission to PR

    Citation

    Get PDF
    Transport coefficients of the TIP4P-2005 water model J. Chem. Phys. 136, 044507 (2012) Monte Carlo study of four dimensional binary hard hypersphere mixtures J. Chem. Phys. 136, 014506 (2012) Energy relaxation of intermolecular motions in supercooled water and ice: A molecular dynamics study J. Chem. Phys. 135, 244511 (2011) The role of the isothermal bulk modulus in the molecular dynamics of super-cooled liquids J. Chem. Phys. 135, 244508 (2011) Experimental evidences for molecular origin of low-Q peak in neutron/x-ray scattering of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids J. Chem. Phys. 135, 244502 (2011) Additional information on J. Chem. Phys. We present molecular dynamics simulations of a binary Lennard-Jones mixture at temperatures below the kinetic glass transition. The ''mobility'' of a particle is characterized by the amplitude of its fluctuation around its average position. The 5% particles with the largest/smallest mean amplitude are then defined as the relatively most mobile/immobile particles. We investigate for these 5% particles their spatial distribution and find them to be distributed very heterogeneously in that mobile as well as immobile particles form clusters. We suggest that this dynamic heterogeneity may be due to the fact that mobile/immobile particles are surrounded by fewer/more neighbors which form an effectively wider/narrower cage. The dependence of our results on the length of the simulation run indicates that individual particles have a characteristic mobility time scale which can be approximated via the non-Gaussian parameter

    Dynamical Heterogeneities Below the Glass Transition

    Full text link
    We present molecular dynamics simulations of a binary Lennard-Jones mixture at temperatures below the kinetic glass transition. The ``mobility'' of a particle is characterized by the amplitude of its fluctuation around its average position. The 5% particles with the largest/smallest mean amplitude are thus defined as the relatively most mobile/immobile particles. We investigate for these 5% particles their spatial distribution and find them to be distributed very heterogeneously in that mobile as well as immobile particles form clusters. The reason for this dynamic heterogeneity is traced back to the fact that mobile/immobile particles are surrounded by fewer/more neighbors which form an effectively wider/narrower cage. The dependence of our results on the length of the simulation run indicates that individual particles have a characteristic mobility time scale, which can be approximated via the non-Gaussian parameter.Comment: revtex, 10 pages, 20 postscript figure

    Cluster Persistence: a Discriminating Probe of Soap Froth Dynamics

    Full text link
    The persistent decay of bubble clusters in coarsening two-dimensional soap froths is measured experimentally as a function of cluster volume fraction. Dramatically stronger decay is observed in comparison to soap froth models and to measurements and calculations of persistence in other systems. The fraction of individual bubbles that contain any persistent area also decays, implying significant bubble motion and suggesting that T1 processes play an important role in froth persistence.Comment: 5 pages, revtex, 4 eps figures. To appear in Europhys. Let

    Magnetic Phase Diagram of the Ferromagnetically Stacked Triangular XY Antiferromagnet: A Finite-Size Scaling Study

    Full text link
    Histogram Monte-Carlo simulation results are presented for the magnetic-field -- temperature phase diagram of the XY model on a stacked triangular lattice with antiferromagnetic intraplane and ferromagnetic interplane interactions. Finite-size scaling results at the various transition boundaries are consistent with expectations based on symmetry arguments. Although a molecular-field treatment of the Hamiltonian fails to reproduce the correct structure for the phase diagram, it is demonstrated that a phenomenological Landau-type free-energy model contains all the esstential features. These results serve to complement and extend our earlier work [Phys. Rev. B {\bf 48}, 3840 (1993)].Comment: 5 pages (RevTex 3.0), 6 figures available upon request, CRPS 93-

    Canonical Solution of Classical Magnetic Models with Long-Range Couplings

    Full text link
    We study the canonical solution of a family of classical nvectorn-vector spin models on a generic dd-dimensional lattice; the couplings between two spins decay as the inverse of their distance raised to the power α\alpha, with α<d\alpha<d. The control of the thermodynamic limit requires the introduction of a rescaling factor in the potential energy, which makes the model extensive but not additive. A detailed analysis of the asymptotic spectral properties of the matrix of couplings was necessary to justify the saddle point method applied to the integration of functions depending on a diverging number of variables. The properties of a class of functions related to the modified Bessel functions had to be investigated. For given nn, and for any α\alpha, dd and lattice geometry, the solution is equivalent to that of the α=0\alpha=0 model, where the dimensionality dd and the geometry of the lattice are irrelevant.Comment: Submitted for publication in Journal of Statistical Physic

    Diffusion and jump-length distribution in liquid and amorphous Cu33_{33}Zr67_{67}

    Get PDF
    Using molecular dynamics simulation, we calculate the distribution of atomic jum ps in Cu33_{33}Zr67_{67} in the liquid and glassy states. In both states the distribution of jump lengths can be described by a temperature independent exponential of the length and an effective activation energy plus a contribution of elastic displacements at short distances. Upon cooling the contribution of shorter jumps dominates. No indication of an enhanced probability to jump over a nearest neighbor distance was found. We find a smooth transition from flow in the liquid to jumps in the g lass. The correlation factor of the diffusion constant decreases with decreasing temperature, causing a drop of diffusion below the Arrhenius value, despite an apparent Arrhenius law for the jump probability
    corecore