281 research outputs found

    Modeling anomalous heat diffusion: Comparing fractional derivative and non-linear diffusivity treatments

    Get PDF
    In the Fourier heat conduction equation, when the flux definition is expressed as the product of a constant diffusivity and the temperature gradient, the characteristic length scale evolves as the square root of time. However, if we replace the 1 st order transient and gradient terms in the Fourier equation with fractional derivatives and/or define a non-linear spatially dependent diffusivity, it is possible to generate an anomalous space-time scaling, i.e., a scaling where the time exponent differs from the expected value of 1/2 . To compare and contrast the possible consequences of using fractional calculus along with a non-linear flux, we investigate a space-time fractional heat diffusion equation that involves a non-linear diffusivity. Following presentation of the governing non-linear fractional equation, we arrive at a space-time scaling that accounts for the combined anomalous contributions of memory (fractional derivative in time), non-locality (fractional derivative in space), and a non-linear diffusivity. We demonstrate how this scaling can manifest in a physical setting by considering the analytical solution of a non-linear fractional space-time diffusion equation, a limit case Stefan problem related to moisture infiltration into a porous media. A direct physically realizable simulation of this process shows how the anomalous space-time scaling is explicitly related to measures of both the memory and non-linearity in the system. Overall, the findings from this work clearly show how the definition of a non-linear diffusivity might contribute to anomalous diffusion behavior and suggests that, in modeling a particular observation, the roles of fractional derivatives and a suitably defined non-linear diffusivity are interchangeable.SEV-2013-0323 BERC.2014–201

    A combined nonlinear and nonlocal model for topographic evolution in channelized depositional systems

    Get PDF
    Models for the overall topographic evolution of erosional and depositional systems can be grouped into two broad classes. The first class is local models in which the sediment flux at a point is expressed as a linear or nonlinear function of local hydrogeomorphic measures (e.g., water discharge and slope). The second class is nonlocal models, where the sediment flux at a point is expressed via a weighted average (i.e., convolution integral) of measures upstream and/or downstream of the point of interest. Until now, the nonlinear and nonlocal models have been developed independently. In this study, we develop a unified model for large-scale morphological evolution that combines both nonlinear and nonlocal approaches. With this model, we show that in a depositional system, under piston-style subsidence, the topographic signatures of nonlinearity and nonlocality are identical and that in combination, their influence is additive. Furthermore, unlike either nonlinear or nonlocal models alone, the combined model fits observed fluvial profiles with parameter values that are consistent with theory and independent observations. By contrast, under conditions of steady bypass, the nonlocal and nonlinear components in the combined model have distinctly different signatures. In the absence of nonlocality, a purely nonlinear model always predicts a bypass fluvial profile with a spatially constant slope, while a nonlocal model produces a nonconstant slope, i.e., profile curvature. This result can be used as a test for inferring the presence of nonlocality and for untangling the relative roles of local and nonlocal mechanisms in shaping depositional morphology

    A control volume finite-element model for predicting the morphology of cohesive-frictional debris flow deposits

    Get PDF
    To predict the morphology of debris flow deposits, a control volume finite-element model (CVFEM) is proposed, balancing material fluxes over irregular control volumes. Locally, the magnitude of these fluxes is taken proportional to the difference between the surface slope and a critical slope, dependent on the thickness of the flow layer. For the critical slope, a Mohr–Coulomb (cohesive-frictional) constitutive relation is assumed, combining a yield stress with a friction angle. To verify the proposed framework, the CVFEM numerical algorithm is first applied to idealized geometries, for which analytical solutions are available. The Mohr–Coulomb constitutive relation is then checked against debris flow deposit profiles measured in the field. Finally, CVFEM simulations are compared with laboratory experiments for various complex geometries, including canyon–plain and canyon–valley transitions. The results demonstrate the capability of the proposed model and clarify the influence of friction angle and yield stress on deposit morphology. Features shared by the field, laboratory, and simulation results include the formation of steep snouts along lobe margins.</p

    Covid-19 and the role of smoking: The protocol of the multicentric prospective study COSMO-IT (covid19 and smoking in italy)

    Get PDF
    The emergency caused by Covid-19 pandemic raised interest in studying lifestyles and comorbidities as important determinants of poor Covid-19 prognosis. Data on tobacco smoking, alcohol consumption and obesity are still limited, while no data are available on the role of e-cigarettes and heated tobacco products (HTP). To clarify the role of tobacco smoking and other lifestyle habits on COVID-19 severity and progression, we designed a longitudinal observational study titled COvid19 and SMOking in ITaly (COSMO-IT). About 30 Italian hospitals in North, Centre and South of Italy joined the study. Its main aims are: 1) to quantify the role of tobacco smoking and smoking cessation on the severity and progression of COVID-19 in hospitalized patients; 2) to compare smoking prevalence and severity of the disease in relation to smoking in hospitalized COVID-19 patients versus patients treated at home; 3) to quantify the association between other lifestyle factors, such as e-cigarette and HTP use, alcohol and obesity and the risk of unfavourable COVID-19 outcomes. Socio-demographic, lifestyle and medical history information will be gathered for around 3000 hospitalized and 700-1000 home-isolated, laboratory-confirmed, COVID-19 patients. Given the current absence of a vaccine against SARS-COV-2 and the lack of a specific treatment for COVID-19, prevention strategies are of extreme importance. This project, designed to highly contribute to the international scientific debate on the role of avoidable lifestyle habits on COVID-19 severity, will provide valuable epidemiological data in order to support important recommendations to prevent COVID-19 incidence, progression and mortality

    Immunological imbalance between IFN-³ and IL-10 levels in the sera of patients with the cardiac form of Chagas disease

    Get PDF
    The immune response is crucial for protection against disease; however, immunological imbalances can lead to heart and digestive tract lesions in chagasic patients. Several studies have evaluated the cellular and humoral immune responses in chagasic patients in an attempt to correlate immunological findings with clinical forms of Chagas disease. Moreover, immunoglobulins and cytokines are important for parasitic control and are involved in lesion genesis. Here, cytokine and IgG isotype production were studied, using total epimastigote antigen on sera of chagasic patients with indeterminate (IND, n = 27) and cardiac (CARD, n = 16) forms of the disease. Samples from normal, uninfected individuals (NI, n = 30) were use as controls. The results showed that sera from both IND and CARD patients contained higher levels of Trypanosoma cruzi-specific IgG1 (IgG1) antibodies than sera from NI. No difference in IgG2 production levels was observed between NI, IND and CARD patients, nor was a difference in IL-10 and IFN-³ production detected in the sera of IND, CARD and NI patients. However, IND patients displayed a positive correlation between IL-10 and IFN-³ levels in serum, while CARD patients showed no such correlation, indicating an uncontrolled inflammatory response in CARD patients. These findings support the hypothesis that a lack of efficient regulation between IFN-³ and IL-10 productions in CARD patients may lead to cardiac immunopathology.CNP

    Using serological measures to monitor changes in malaria transmission in Vanuatu

    Get PDF
    BACKGROUND: With renewed interest in malaria elimination, island environments present unique opportunities to achieve this goal. However, as transmission decreases, monitoring and evaluation programmes need increasingly sensitive tools to assess Plasmodium falciparum and Plasmodium vivax exposure. In 2009, to assess the role of serological markers in evaluating malaria transmission, a cross-sectional seroprevalence study was carried out in Tanna and Aneityum, two of the southernmost islands of the Vanuatu archipelago, areas where malaria transmission has been variably reduced over the past few decades. METHODS: Malaria transmission was assessed using serological markers for exposure to P. falciparum and P. vivax. Filter blood spot papers were collected from 1,249 people from Tanna, and 517 people from Aneityum to assess the prevalence of antibodies to two P. falciparum antigens (MSP-119 and AMA-1) and two P. vivax antigens (MSP-119 and AMA-1). Age-specific prevalence was modelled using a simple catalytic conversion model based on maximum likelihood to generate a community seroconversion rate (SCR). RESULTS: Overall seropositivity in Tanna was 9.4%, 12.4% and 16.6% to P. falciparum MSP-119, AMA-1 and Schizont Extract respectively and 12.6% and 15.0% to P. vivax MSP-119 and AMA-1 respectively. Serological results distinguished between areas of differential dominance of either P. vivax or P. falciparum and analysis of age-stratified results showed a step in seroprevalence occurring approximately 30 years ago on both islands, indicative of a change in transmission intensity at this time. Results from Aneityum suggest that several children may have been exposed to malaria since the 2002 P. vivax epidemic. CONCLUSION: Seroepidemiology can provide key information on malaria transmission for control programmes, when parasite rates are low. As Vanuatu moves closer to malaria elimination, monitoring changes in transmission intensity and identification of residual malaria foci is paramount in order to concentrate intervention efforts

    Area 5 Influences Excitability within the Primary Motor Cortex in Humans

    Get PDF
    In non-human primates, Brodmann's area 5 (BA 5) has direct connectivity with primary motor cortex (M1), is largely dedicated to the representation of the hand and may have evolved with the ability to perform skilled hand movement. Less is known about human BA 5 and its interaction with M1 neural circuits related to hand control. The present study examines the influence of BA 5 on excitatory and inhibitory neural circuitry within M1 bilaterally before and after continuous (cTBS), intermittent (iTBS), and sham theta-burst stimulation (sham TBS) over left hemisphere BA 5. Using single and paired-pulse TMS, measurements of motor evoked potentials (MEPs), short interval intracortical inhibition (SICI), and intracortical facilitation (ICF) were quantified for the representation of the first dorsal interosseous muscle. Results indicate that cTBS over BA 5 influences M1 excitability such that MEP amplitudes are increased bilaterally for up to one hour. ITBS over BA 5 results in an increase in MEP amplitude contralateral to stimulation with a delayed onset that persists up to one hour. SICI and ICF were unaltered following TBS over BA 5. Similarly, F-wave amplitude and latency were unaltered following cTBS over BA 5. The data suggest that BA 5 alters M1 output directed to the hand by influencing corticospinal neurons and not interneurons that mediate SICI or ICF circuitry. Targeting BA 5 via cTBS and iTBS is a novel mechanism to powerfully modulate activity within M1 and may provide an avenue for investigating hand control in healthy populations and modifying impaired hand function in clinical populations
    corecore