45 research outputs found

    Secure Full-Duplex Device-to-Device Communication

    Get PDF
    This paper considers full-duplex (FD) device-to-device (D2D) communications in a downlink MISO cellular system in the presence of multiple eavesdroppers. The D2D pair communicate sharing the same frequency band allocated to the cellular users (CUs). Since the D2D users share the same frequency as the CUs, both the base station (BS) and D2D transmissions interfere each other. In addition, due to limited processing capability, D2D users are susceptible to external attacks. Our aim is to design optimal beamforming and power control mechanism to guarantee secure communication while delivering the required quality-of-service (QoS) for the D2D link. In order to improve security, artificial noise (AN) is transmitted by the BS. We design robust beamforming for secure message as well as the AN in the worst-case sense for minimizing total transmit power with imperfect channel state information (CSI) of all links available at the BS. The problem is strictly non-convex with infinitely many constraints. By discovering the hidden convexity of the problem, we derive a rank-one optimal solution for the power minimization problem.Comment: Accepted in IEEE GLOBECOM 2017, Singapore, 4-8 Dec. 201

    Rotational Subgroup Voting and Pose Clustering for Robust 3D Object Recognition

    Get PDF
    It is possible to associate a highly constrained subset of relative 6 DoF poses between two 3D shapes, as long as the local surface orientation, the normal vector, is available at every surface point. Local shape features can be used to find putative point correspondences between the models due to their ability to handle noisy and incomplete data. However, this correspondence set is usually contaminated by outliers in practical scenarios, which has led to many past contributions based on robust detectors such as the Hough transform or RANSAC. The key insight of our work is that a single correspondence between oriented points on the two models is constrained to cast votes in a 1 DoF rotational subgroup of the full group of poses, SE(3). Kernel density estimation allows combining the set of votes efficiently to determine a full 6 DoF candidate pose between the models. This modal pose with the highest density is stable under challenging conditions, such as noise, clutter, and occlusions, and provides the output estimate of our method. We first analyze the robustness of our method in relation to noise and show that it handles high outlier rates much better than RANSAC for the task of 6 DoF pose estimation. We then apply our method to four state of the art data sets for 3D object recognition that contain occluded and cluttered scenes. Our method achieves perfect recall on two LIDAR data sets and outperforms competing methods on two RGB-D data sets, thus setting a new standard for general 3D object recognition using point cloud data.Comment: Accepted for International Conference on Computer Vision (ICCV), 201

    Anaerobic sulfur oxidation underlies adaptation of a chemosynthetic symbiont to oxic-anoxic interfaces

    Get PDF
    Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on “Candidatus Thiosymbion oneisti.” Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of (13)C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that “Ca. T. oneisti” may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of “Candidatus Thiosymbion oneisti,” a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont

    Yeast Npi3/Bro1 is involved in ubiquitin-dependent control of permease trafficking

    Get PDF
    AbstractThe membrane traffic and stability of the general amino acid permease Gap1 of Saccharomyces cerevisiae are under nitrogen control. Addition of a preferential nitrogen source such as ammonium to cells growing on a poor nitrogen source induces internalization of the permease and its subsequent degradation in the vacuole. This down-regulation requires ubiquitination of Gap1 through a process involving ubiquitin ligase Npi1/Rsp5, ubiquitin hydrolase Npi2/Doa4, and Bul1/2, two Npi1/Rsp5 interacting proteins. Here we report that yet another protein, Npi3, is involved in the regulation of Gap1 trafficking. We show that Npi3 is required for NH4+-induced down-regulation of Gap1, and particularly for efficient ubiquitination of the permease. Npi3 plays a pleiotropic role in permease down-regulation, since it is also involved in ubiquitination and stress-induced down-regulation of the uracil permease Fur4 and in glucose-induced degradation of hexose transporters Hxt6/7. We further provide evidence that Npi3 is required for direct vacuolar sorting of neosynthesized Gap1 permease as it occurs in npr1 mutant cells. NPI3 is identical to BRO1, a gene encoding a protein of unknown biochemical function and recently proposed to be involved in protein turnover. Npi3/Bro1 homologues include fungal proteins required for proteolytic cleavage of zinc finger proteins and the mouse Aip1 protein involved in apoptosis. We propose that proteins of the Npi3/Bro1 family, including homologues from higher species, may play a conserved role in ubiquitin-dependent control of membrane protein trafficking

    Cytochemical Investigation of the Digestive Gland of Two Strombidae Species (Strombus gigas and Strombus pugilis) in Relation to the Nutrition

    No full text
    International audienceStrombus gigas and Strombus pugilis are threatened species and aquaculture represents a good alternative solution to the fishing. In this study, we highlighted the intracellular digestion process in the digestive gland of two Strombidae species, S. gigas and Strombus pugilis, by the cytochemical characterization of two lysosomal enzymes: acid phosphatase and arylsulfatase. In order to check the efficiency of artificial food digestion, we onducted the characterization on freshly collected, tarved and artificially fed individuals of S. pugilis. TEM observations of digestive gland sections from freshly collected individuals of both species revealed the resence of acid phosphatase and arylsulfatase activity mostly located in the apical third of digestive cells. Both enzymes were also detected in artificially fed individuals. In response to the starvation, acid phosphatase is not produced anymore by digestive cells, while arylsulfatase is still present. To our knowledge, this is the first cytochemical validation of intracellular digestion of artificial food in Strombidae. This study highlights the intracellular digestion of artificial food developed for Strombidae aquaculture. Moreover, we have shown that the lysosomal activity could be used as a feed index

    Occurrence of Sporozoa-like microorganisms in the digestive gland of various species of Strombidae

    No full text
    The article discusses research on the presence of sporozoa-like microorganisms in the digestive gland of various species of Strombidae. One research by Gros, Frenkiel and Aldana Aranda described the digestive gland of Strombus gigas Linnaeus as having an assemblage of tubules and ducts. Another study found the occurrence of intracellular microorganisms believed to be the various life cycle stages of Apicomplexa

    The potential role of spherocrystals in the detoxification of essential trace metals following exposure to Cu and Zn in the fighting conch Strombus (Lobatus) pugilis

    No full text
    International audienceCrypt cells—one of the three cell types composing Strombidae digestive tubules—are characterized by the presence of numerous metal-containing phosphate granules termed spherocrystals. We explored the bioaccumulation and detoxification of metals in Strombidae by exposing wild fighting conch Strombus pugilis for 9 days to waterborne CuSO4 and ZnSO4. The total amount of Cu and Zn was determined in the digestive gland and in the rest of the body by Inductively Coupled Plasma (ICP) analyses. The digestive gland spherocrystal metal content was investigated based on the semi-quantitative energy dispersive X-ray (EDX) elemental analysis. ICP analyses of unexposed individuals revealed that 87.0 ± 5.9% of the Zn is contained in the digestive gland, where its concentration is 36 times higher than in the rest of the body. Regarding Cu, 25.8 ± 16.4% of the metal was located in the digestive gland of the control individuals, increasing to 61.5 ± 16.4% in exposed individuals. Both Cu and Zn concentrations in the digestive gland increased after exposures, pointing to a potential role of this organ in the detoxification of these metals. EDX analysis of spherocrystals revealed the presence of Ca, Cl, Fe, K, Mg, P, and Zn in unexposed individuals. No difference was found in the relative proportion of Zn in spherocrystals of exposed versus control individuals. Contrastingly, copper was never detected in the spherocrystals from controls and Zn-exposed individuals, but the relative proportion of Cu in spherocrystals of Cu-exposed individuals varied from 0.3 to 5.7%. Our results show the direct role of spherocrystals in Cu detoxification

    Kentrophoros sp. H sample 500-10 ciliate cell labels

    No full text
    Kentrophoros sp. H sample 500-10 - label file to mark external boundary of ciliate cell. File in Amira format

    Kentrophoros sp. H sample 500-10 ciliate cell surface

    No full text
    Kentrophoros sp. H sample 500-10 - surface file for external boundary of ciliate cell. File in Amira format
    corecore