20 research outputs found

    Heterogeneity and incidence of non-response for changes in cardiorespiratory fitness following time-efficient sprint interval exercise training

    Get PDF
    Interindividual variability for training-induced changes in maximal oxygen uptake (VO2max) is well described following continuous aerobic and high-intensity interval training. Whether similar variability is observed following time-efficient sprint interval training with minimal training volume (i.e., reduced-exertion high-intensity interval training; REHIT) is unknown. We conducted a pooled analysis of n=117 (68 men) training participants (mean±SD: age: 30±10 y; VO2max: 34.8±7.5 ml·kg-1·min-1), who completed a VO2max assessment before and 3 days after 6 weeks of REHIT comprising of two 10-20 second ‘all-out’ cycling sprints per session, and n=40 no-intervention control participants (age: 30±13 y; VO2max: 31.5±6.5 ml·kg-1·min-1) who completed repeated VO2max tests over a comparable timeframe. Individual responses estimated using 50% confidence intervals derived from the technical error were interpreted against a smallest worthwhile change (SWC) of 1.75 ml·kg-1·min-1. The standard deviation of individual responses was 2.39 ml·kg-1·min-1 demonstrating clinically meaningful heterogeneity in training-induced changes in VO2max following REHIT that exceed the technical, biological and random within-subjects variability of VO2max assessment. The likely (75% probability) non-response rate was 18% (21/117), and 49% (57/117) of individuals demonstrated increases in VO2max likely higher than the SWC. We conclude that the well-described increase in VO2max following REHIT at the group level is subject to substantial variability in magnitude at an individual level. This has important implications for exercise prescription and can be harnessed to elucidate mechanisms of adaptation

    The effect of low volume sprint interval training in patients with non-alcoholic fatty liver disease

    Get PDF
    Objectives: Exercise is an important part of disease management in patients with non-alcoholic fatty liver disease (NAFLD), but adherence to current exercise recommendations is poor. Novel low-volume sprint interval training (SIT) protocols with total training time commitments of ≤30 min per week have been shown to improve cardiometabolic risk and functional capacity in healthy sedentary participants, but the efficacy of such protocols in the management of NAFLD remains unknown. The aim of the present study was to examine whether a low-volume SIT protocol can be used to improve liver function, insulin resistance, body composition, physical fitness, cognitive function and general well-being in patients with NAFLD.Methods: In the present study, 7 men and 2 women with NAFLD (age: 45±8 y, BMI: 28.7±4.1 kg·m−2) completed a 6-week control period followed by 6 weeks of twice-weekly SIT sessions (5-10×6-s ‘all-out’ cycle sprints). Body composition, blood pressure, liver function, metabolic function, functional capacity, cognitive function and quality of life were assessed at baseline, following the control period, and following the SIT intervention.Results: Walking speed during the walk test (+12%), estimated V̇O2max (+8%), verbal fluency (+44%), and blood platelet count (+12%; all p<0.05) significantly increased during the control period. These measures remained significantly raised compared to baseline following the SIT intervention, but did not significantly change any further compared to the post-control time-point. Diastolic blood pressure decreased from 87±10 to 77±8 mm Hg from the end of the control period to the end of the SIT intervention (p<0.05).Conclusion: This study does not support the use of 6 weeks of a low volume SIT protocol involving twice-weekly sessions with 5-10×6-s ‘all-out’ cycle sprints as an intervention for NAFLD disease management

    No Acute Effect of Reduced-exertion High-intensity Interval Training (REHIT) on Insulin Sensitivity

    Get PDF
    We have previously demonstrated that reduced-exertion high-intensity interval training (REHIT), requiring a maximum of two 20-s all-out cycling sprints in a 10-min exercise session, improves insulin sensitivity in sedentary men over a 6-week training intervention. However, the acute effects of REHIT on insulin sensitivity have not previously been described. In this study 14 men and women (mean±SD age: 23±5 years; BMI 22.7±4.7 kg·m−2; +˙VO2max: 37.4±8.6 mL·kg−1·min−1) underwent oral glucose tolerance testing 14–16 h after an acute bout of reduced-exertion high-intensity interval training (2×20-s all-out sprints; REHIT), moderate-vigorous aerobic exercise (45 min at ~75% VO2max; AER), and a resting control condition (REST). Neither REHIT nor AER was associated with significant changes in glucose AUC (REHIT 609±98 vs. AER 651±85 vs. REST 641±126 mmol·l−1·120 min), insulin AUC (REHIT 30.9±15.4 vs. AER 31.4±13.0 vs. REST 35.0±18.5 nmol·l−1·120 min) or insulin sensitivity estimated by the Cederholm index (REHIT 86±20 vs. AER 79±13 vs. REST 82±24 mg·l2·mmol−1·mU−1·min−1). These data suggest that improvements in insulin sensitivity following a chronic REHIT intervention are the result of training adaptations rather than acute effects of the last exercise session

    Physiological and perceptual responses to sprint interval exercise using arm versus leg cycling ergometry

    Get PDF
    Increases in power output and maximal oxygen consumption (VO2max) occur in response to sprint interval exercise (SIE), but common use of “all-out” intensities presents a barrier for many adults. Furthermore, lower-body SIE is not feasible for all adults. We compared physiological and perceptual responses to supramaximal, but “non-all-out” SIE between leg and arm cycling exercise. Twenty-four active adults (mean ± SD age: [25 ± 7] y; cycling VO2max: [39 ± 7] mL·kg−1·min−1) performed incremental exercise using leg (LCE) and arm cycle ergometry (ACE) to determine VO2max and maximal work capacity (Wmax). Subsequently, they performed four 20 s (s) bouts of SIE at 130 % Wmax on the LCE or ACE at cadence = 120–130 rev/min, with 2 min (min) recovery between intervals. Gas exchange data, heart rate (HR), blood lactate concentration (BLa), rating of perceived exertion (RPE), and affective valence were acquired. Data showed significantly lower (p  0.42), and lowest affective valence recorded (2.0 ± 1.8) was considered “good to fairly good”. Data show that non “all-out” ACE elicits lower absolute but higher relative HR and VO2 compared to LCE. Less aversive perceptual responses could make this non-all-out modality feasible for inactive adults

    Affective and perceptual responses during reduced-exertion high-intensity interval training (REHIT)

    Get PDF
    We have previously demonstrated that reduced-exertion high-intensity interval training (REHIT) is a genuinely time-efficient exercise strategy for improving cardiometabolic health. Here, we examined the affective and perceptual responses to REHIT. Eight young men and women (age 21 ± 1 y, BMI 24.9 ± 2.1 m/kg2, V̇O2max 39 ± 10 ml/kg/min) and 11 men with type 2 diabetes (T2D; age 52 ± 6 y, BMI 29.7 ± 3.1 m/kg2, V̇O2max 29 ± 5 ml/kg/min) took part in three-arm crossover trials with RPE and affective valence measured during, and enjoyment and exercise preferences measured following either: 1) REHIT (2 × 20-s sprints in a 10-min exercise session), 2) HIIT (10 × 1-min efforts) and 3) 30 min MICT. Furthermore, 19 young men and women (age 25 ± 6 y, BMI 24 ± 4 m/kg2, V̇O2max 34 ± 8 ml/kg/min) completed a 6-week REHIT intervention with affective valence during an acute REHIT session measured before and after training. Affect decreases (briefly) during REHIT, but recovers rapidly, and the decline is not significantly different when compared to MICT or HIIT in either healthy participants or T2D patients. Young sedentary participants reported similar levels of enjoyment for REHIT, MICT and HIIT, but 7 out of 8 had a preference for REHIT. Conversely, T2D patients tended to report lower levels of enjoyment with REHIT compared with MICT. The decrease in affective valence observed during an acute REHIT session was significantly attenuated following training. We conclude that affective and perceptual responses to REHIT are no more negative compared to those associated with MICT or HIIT, refuting claims that supramaximal sprint interval training protocols are associated with inherent negative responses

    A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients

    Get PDF
    Reduced-exertion high-intensity interval training (REHIT) is a genuinely time-efficient intervention that can improve aerobic capacity and insulin sensitivity in sedentary individuals. The present study compared the effects of REHIT and moderate-intensity walking on health markers in patients with type 2 diabetes (T2D) in a counter-balanced crossover study. Sixteen men with T2D (mean ± SD age: 55 ± 5 years, body mass index: 30.6 ± 2.8 kg·m−2, maximal aerobic capacity: 27 ± 4 mL·kg−1·min−1) completed 8 weeks of REHIT (three 10-min low-intensity cycling sessions/week with two “all-out” 10–20-s sprints) and 8 weeks of moderate-intensity walking (five 30-min sessions/week at an intensity corresponding to 40%–55% of heart-rate reserve), with a 2-month wash-out period between interventions. Before and after each intervention, participants underwent an incremental fitness test, an oral glucose tolerance test (OGTT), a whole-body dual-energy X-ray absorptiometry scan, and continuous glucose monitoring. REHIT was associated with a significantly larger increase in maximal aerobic capacity compared with walking (7% vs. 1%; time × intervention interaction effect:p< 0.05). Both REHIT and walking decreased resting mean arterial pressure (−4%; main effect of time:p< 0.05) and plasma fructosamine (−5%; main effect of time:p< 0.05). Neither intervention significantly improved OGTT-derived measures of insulin sensitivity, glycaemic control measured using continuous glucose monitors, blood lipid profile, or body composition. We conclude that REHIT is superior to a 5-fold larger volume of moderate-intensity walking in improving aerobic fitness, but similar to walking REHIT is not an effective intervention for improving insulin sensitivity or glycaemic control in T2D patients in the short term

    Affecting Effects on Affect: The Impact of Protocol Permutations on Affective Responses to Sprint Interval Exercise; A Systematic Review and Meta-Analysis of Pooled Individual Participant Data

    Get PDF
    Responses to sprint interval exercise (SIE) are hypothesized to be perceived as unpleasant, but SIE protocols are diverse, and moderating effects of various SIE protocol parameters on affective responses are unknown. We performed a systematic search to identify studies (up to 01/05/2021) measuring affective valence using the Feeling Scale during acute SIE in healthy adults. Thirteen studies involving 18 unique trials and 316 unique participant (142 women and 174 men) affective responses to SIE were eligible for inclusion. We received individual participant data for all participants from all studies. All available end-of-sprint affect scores from each trial were combined in a linear mixed model with sprint duration, mode, intensity, recovery duration, familiarization and baseline affect included as covariates. Affective valence decreased significantly and proportionally with each additional sprint repetition, but this effect was modified by sprint duration: affect decreased more during 30 s (0.84 units/sprint; 95% CI: 0.74–0.93) and 15–20 s sprints (1.02 units/sprint; 95% CI: 0.93–1.10) compared with 5–6 s sprints (0.20 units/sprint; 95% CI: 0.18–0.22) (both p < 0.0001). Although the difference between 15–20 s and 30 s sprints was also significant (p = 0.02), the effect size was trivial (d = −0.12). We observed significant but trivial effects of mode, sprint intensity and pre-trial familiarization, whilst there was no significant effect of recovery duration. We conclude that affective valence declines during SIE, but the magnitude of the decrease for an overall SIE session strongly depends on the number and duration of sprints. This information can be applied by researchers to design SIE protocols that are less likely to be perceived as unpleasant in studies of real-world effectiveness

    Is Low-Volume High-Intensity Interval Training a Time-Efficient Strategy to Improve Cardiometabolic Health and Body Composition? A Meta-Analysis

    Get PDF
    The present meta-analysis aimed to assess the effects of low-volume high-intensity interval training (LV-HIIT; i.e., ≤5 min high-intensity exercise within a ≤15-min session) on cardiometabolic health and body composition. A systematic search was performed in accordance with PRISMA guidelines to assess the effect of LV-HIIT on cardiometabolic health and body composition. Twenty-one studies (moderate to high quality) with a total of 849 participants were included in this meta-analysis. LV-HIIT increased cardiorespiratory fitness (CRF, SMD=1.19 [0.87, 1.50]) while lowering systolic blood pressure (SMD=-1.44 [-1.68, -1.20]), diastolic blood pressure (SMD=-1.51 [-1.75, -1.27]), mean arterial pressure (SMD=-1.55 [-1.80, -1.30]), MetS z-score (SMD=-0.76 [-1.02, -0.49]), fat mass (kg) (SMD=-0.22 [-0.44, 0.00]), fat mass (%) (SMD=-0.22 [-0.41, -0.02]), and waist circumference (SMD= -0.53 [-0.75, -0.31]) compared to untrained control (CONTROL). Despite a total time-commitment of LV-HIIT of only 14-47% and 45-94% compared to moderate-intensity continuous training and HV-HIIT, respectively, there were no statistically significant differences observed for any outcomes in comparisons between LV-HIIT and moderate-intensity continuous training (MICT) or high-volume HIIT. Significant inverse dose–responses were observed between the change in CRF with LV-HIIT and sprint repetitions (β=−0.52 [-0.76, -0.28]), high-intensity duration (β=−0.21 [-0.39, -0.02]), and total duration (β=−0.19 [-0.36, -0.02]), while higher intensity significantly improved CRF gains. LV-HIIT can improve cardiometabolic health and body composition and represent a time-efficient alternative to MICT and HV-HIIT. Performing LV-HIIT at a higher intensity drives higher CRF gains. More repetitions, longer time at high-intensity, and total session duration did not augment gains in CRF

    A practical and time-efficient high-intensity interval training program modifies cardio-metabolic risk factors in adults with risk factors for type ii diabetes

    Get PDF
    Introduction: Regular physical activity (PA) can reduce the risk of developing type 2 diabetes, but adherence to time-orientated (150 min week−1 or more) PA guidelines is very poor. A practical and time-efficient PA regime that was equally efficacious at controlling risk factors for cardio-metabolic disease is one solution to this problem. Herein, we evaluate a new time-efficient and genuinely practical high-intensity interval training (HIT) protocol in men and women with pre-existing risk factors for type 2 diabetes.Materials and methods: One hundred eighty-nine sedentary women (n = 101) and men (n = 88) with impaired glucose tolerance and/or a body mass index >27 kg m−2 [mean (range) age: 36 (18–53) years] participated in this multi-center study. Each completed a fully supervised 6-week HIT protocol at work-loads equivalent to ~100 or ~125% V˙O2 max. Change in V˙O2 max was used to monitor protocol efficacy, while Actiheart™ monitors were used to determine PA during four, weeklong, periods. Mean arterial (blood) pressure (MAP) and fasting insulin resistance [homeostatic model assessment (HOMA)-IR] represent key health biomarker outcomes.Results: The higher intensity bouts (~125% V˙O2 max) used during a 5-by-1 min HIT protocol resulted in a robust increase in V˙O2 max (136 participants, +10.0%, p < 0.001; large size effect). 5-by-1 HIT reduced MAP (~3%; p < 0.001) and HOMA-IR (~16%; p < 0.01). Physiological responses were similar in men and women while a sizeable proportion of the training-induced changes in V˙O2 max, MAP, and HOMA-IR was retained 3 weeks after cessation of training. The supervised HIT sessions accounted for the entire quantifiable increase in PA, and this equated to 400 metabolic equivalent (MET) min week−1. Meta-analysis indicated that 5-by-1 HIT matched the efficacy and variability of a time-consuming 30-week PA program on V˙O2 max, MAP, and HOMA-IR.Conclusion: With a total time-commitment o

    Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training

    Get PDF
    High-intensity interval training (HIT) has been proposed as a time-efficient alternative to traditional cardiorespiratory exercise training, but is very fatiguing. In this study, we investigated the effects of a reduced-exertion HIT (REHIT) exercise intervention on insulin sensitivity and aerobic capacity. Twenty-nine healthy but sedentary young men and women were randomly assigned to the REHIT intervention (men, n = 7; women, n = 8) or a control group (men, n = 6; women, n = 8). Subjects assigned to the control groups maintained their normal sedentary lifestyle, whilst subjects in the training groups completed three exercise sessions per week for 6 weeks. The 10-min exercise sessions consisted of low-intensity cycling (60 W) and one (first session) or two (all other sessions) brief ‘all-out’ sprints (10 s in week 1, 15 s in weeks 2–3 and 20 s in the final 3 weeks). Aerobic capacity ( V˙O2peakV˙O2peak ) and the glucose and insulin response to a 75-g glucose load (OGTT) were determined before and 3 days after the exercise program. Despite relatively low ratings of perceived exertion (RPE 13 ± 1), insulin sensitivity significantly increased by 28% in the male training group following the REHIT intervention (P < 0.05). V˙O2peakV˙O2peak increased in the male training (+15%) and female training (+12%) groups (P < 0.01). In conclusion we show that a novel, feasible exercise intervention can improve metabolic health and aerobic capacity. REHIT may offer a genuinely time-efficient alternative to HIT and conventional cardiorespiratory exercise training for improving risk factors of T2D
    corecore