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Abstract

Interindividual variability for training-induced changes in maximal oxygen uptake (VO2max)

is well described following continuous aerobic and high-intensity interval training. Whether

similar variability is observed following time-efficient sprint interval training with minimal

training volume (i.e., reduced-exertion high-intensity interval training; REHIT) is unknown.

We conducted a pooled analysis of n=117 (68 men) training participants (mean±SD: age:

30±10 y; VO2max: 34.8±7.5 ml·kg-1·min-1), who completed a VO2max assessment before

and 3 days after 6 weeks of REHIT comprising of two 10-20 second ‘all-out’ cycling sprints

per session, and n=40 no-intervention control participants (age: 30±13 y; VO2max: 31.5±6.5

ml·kg-1·min-1) who completed repeated VO2max tests over a comparable timeframe.

Individual responses estimated using 50% confidence intervals derived from the technical

error were interpreted against a smallest worthwhile change (SWC) of 1.75 ml·kg-1·min-1.

The standard deviation of individual responses was 2.39 ml·kg-1·min-1 demonstrating

clinically meaningful heterogeneity in training-induced changes in VO2max following

REHIT that exceed the technical, biological and random within-subjects variability of

VO2max assessment. The likely (75% probability) non-response rate was 18% (21/117), and

49% (57/117) of individuals demonstrated increases in VO2max likely higher than the SWC.

We conclude that the well-described increase in VO2max following REHIT at the group level

is subject to substantial variability in magnitude at an individual level. This has important

implications for exercise prescription and can be harnessed to elucidate mechanisms of

adaptation. 

Novelty:

 There is substantial heterogeneity in VO2max responses following time-efficient

sprint interval training

 Proportion of non-response was 18% and ∽50% of individuals show clinically

meaningful increases in VO2max

Keywords: Aerobic Capacity; High-Intensity Interval Training; Sprint Interval Training;

Individual Responses; Individual Variability; Cardiorespiratory Fitness



1. Introduction

The maximal attainable rate of oxygen uptake (VO2max) is amongst the most important

physiological traits that determine long term health and longevity. Indeed, a low VO2max

predicts cardiovascular and all-cause mortality to a similar or greater extent compared with

other established risk factors, including body mass index, smoking, hypertension and type 2

diabetes (Ross et al., 2016). Although VO2max is a partly heritable trait (Bouchard et al.,

1998), it can also be improved (on average) through regular exercise training (Bouchard et

al., 1999; Sisson et al., 2009), and those who are able to improve their VO2max over several

years lower their risk of cardiovascular and all-cause mortality in a dose-dependent manner

(Lee et al., 2011).

Whilst VO2max improves on average in response to both continuous endurance and high-

intensity interval exercise training (Bacon et al., 2013; Weston et al., 2014), it has been

recognised for over 3 decades that individual measured changes following standardised

exercise training can be highly variable and a proportion of people will demonstrate no

measurable change (so called, ‘non-responders’) (Bouchard et al., 1999; Lortie et al., 1984).

Even following several months of high-volume aerobic exercise training, measured

individual changes in VO2max can range from decreases of 100 ml·min-1 to gains of more

than 1100 ml·min-1 (Bouchard et al., 1999). This interindividual variability in response is

thought to be explained by a range of factors, including random or technical error, the method

of standardising relative exercise intensity, and genetic and epigenetic variance (Sarzynski et

al., 2017). Some have also argued that ‘non-responders’ to exercise training in general do not

exist and instead are an artefact of an insufficient training stimulus for those individuals

(Bacon et al., 2013; Montero and Lundby, 2017). Nonetheless, some individuals may be non-

responders to set training interventions (characterised by training intensity, duration,

frequency, and mode) that are efficacious at inducing training effects in others.

Over the last 15 years, sprint interval training (SIT) has emerged as an efficacious exercise

training stimulus for improving VO2max in previously inactive individuals (Gillen and

Gibala, 2014; Sultana et al., 2019; Vollaard and Metcalfe, 2017; Vollaard et al., 2017). A

particularly interesting finding to emerge from SIT research is that the training-induced

change in VO2max does not appear to increase (and possibly decreases) with an increasing



number of sprint repetitions (Vollaard et al., 2017). Indeed, at a group level, improvements in

VO2max have been observed with as few as two or three, 20-second, all-out cycling sprints

performed regularly over a 6-12-week training intervention (termed ‘reduced-exertion high-

intensity interval training’ or REHIT) (Gillen et al., 2016; Metcalfe et al., 2016, 2012). These

findings have particular relevance in the search for effective, ‘real-world’, time-efficient

exercise strategies to overcome lack of time as a barrier to exercise initiation and adherence

in low active individuals (Vollaard and Metcalfe, 2017).

The variability in training-induced changes in VO2max has been well described in response

to continuous endurance training (Bouchard et al., 1999; Sisson et al., 2009) and more

recently in response to high-intensity (HIIT) and sprint interval training (SIT) (Astorino and

Schubert, 2014; Bonafiglia et al., 2016; Gurd et al., 2016; Islam et al., 2020; Phillips et al.,

2017; Williams et al., 2019). However, studies examining interindividual variability in

response to SIT to date have involved arduous SIT protocols requiring a relatively high

number of sprint repetitions (Astorino and Schubert, 2014; Bonafiglia et al., 2016; Gurd et

al., 2016; Islam et al., 2020; Williams et al., 2019), have combined HIIT and SIT protocols

together (Williams et al., 2019) or, in some cases, the analysis has been limited by not

utilising relevant information from a time-matched control condition (Astorino and Schubert,

2014). No study has characterised the heterogeneity in response or the incidence of non-

responders to a genuinely time-efficient SIT exercise protocol such as REHIT. Given the low

overall dose of exercise involved with REHIT (a total of <10 minutes of sprint exercise

within 3 hours of training time over a 6-week training period, e.g. (Metcalfe et al., 2016,

2012)), alongside suggestions that ‘non-responders’ may be an artefact of an insufficient

training stimulus (Bacon et al., 2013; Montero and Lundby, 2017), it is reasonable to

question whether the incidence of non-response would be high following this training

intervention, and what proportion of individuals (if any) are likely to show a change that

would be considered clinically meaningful. Individual variability in the training-induced

change in VO2max in response to REHIT has been alluded to (Metcalfe et al., 2016), but not

definitively demonstrated using an adequate sample size, or appropriate experimental and

statistical methods. The inclusion of data from no-exercise control group is particularly

important when assessing individual responses to exercise training in order to account for the

variance caused by technical error, day-to-day biological and random within-subjects

variability (Atkinson and Batterham, 2015; Bonafiglia et al., 2019). Thus, the aim of this

study was firstly to establish whether true individual variability in changes in VO2max in



response to REHIT exists and, if so, to characterise the heterogeneity of response and

incidence of non-responders to this extremely low-volume and time-efficient exercise

intervention.

2. Methods

2.1. Participants / Sample

We conducted a secondary analysis of six published studies conducted in our laboratories

between 2012 and 2020 (Metcalfe et al., 2020, 2016, 2012; Nalçakan et al., 2018; Songsorn

et al., 2016; Thomas et al., 2020). This included a sample of 117 pooled training participants

(68 male, 49 female) who underwent an almost identical SIT intervention (described in full

below), and 40 pooled no-intervention control participants (16 male, 24 female) from three of

these studies who underwent two assessments of maximal oxygen uptake either ~4 (n=14;

(Songsorn et al., 2016)) or ~6 (n=26; (Metcalfe et al., 2020, 2012)) weeks apart. Training

participants from two of the included studies who underwent substantially different SIT

interventions, either involving single 20-s sprints (Songsorn et al., 2016) or reduced sprint

duration (Nalçakan et al., 2018), were excluded because these studies demonstrated that these

interventions either do not alter VO2max (single 20-s sprints; (Songsorn et al., 2016)) or

results in a significantly lower mean increase (reduced sprint duration; (Nalçakan et al.,

2018)). The inclusion and exclusion criteria were similar across all six included studies. All

participants were classified as either sedentary or moderately physically active on enrolment

onto the study according to the criteria of the International Physical Activity Questionnaire.

Participants with any contraindication to exercise based on a self-report health history

questionnaire and an assessment of high resting blood pressure (>140/90 mmHg) or high

resting heart rate (>100 bpm) were excluded. The pooled participant characteristics are

shown in Table 1. Ethical approval was obtained for all included experiments (details and

approval references are available in the original articles (Metcalfe et al., 2020, 2016, 2012;

Nalçakan et al., 2018; Songsorn et al., 2016; Thomas et al., 2020)) and all participants

provided their written consent to take part after they received information about the study

both verbally and in writing. All experiments were conducted in accordance with the

Declaration of Helsinki.

Table 1 Baseline Participant Characteristics

Training (n=117) Control (n=40) p-value



Male / Female (n) 68/49 16/24 -

Age (y) 30‐±‐10 30‐±‐13 0.98

Height (m) 1.72‐±‐0.09 1.69‐±‐0.09 0.17

Body Mass (kg) 74.7‐±‐15.5 70.4‐±‐16.1 0.14

BMI (kg·m-2) 25.2‐±‐4.2 24.4‐±‐4.6 0.30

VO2max (ml·kg-1·min-1) 34.8‐±‐7.5 31.5‐±‐6.5 0.01

Data are presented as mean ± SD. p-values derived from independent t-test.

2.2. Assessment of Maximal Oxygen Uptake

All participants underwent an incremental cycling test to their limit of tolerance to determine

maximal oxygen uptake. In participants in the SIT groups, these were conducted in the week

prior to training and then ~3 days following the final training session. The specific protocols

have been described previously (Metcalfe et al., 2020, 2016, 2012; Nalçakan et al., 2018;

Songsorn et al., 2016; Thomas et al., 2020). Although there were slight variations in the

protocol and equipment used across studies, the mean and standard deviation of the change in

VO2max are strikingly similar (Table 3) suggesting these are ‘typical’ for studies of this

nature and hence appropriate for a pooled analysis. In the majority (n=103) of training

participants and all (n=40) of the control participants, breath by breath measurements of

pulmonary gas exchange were captured continuously during the test using a metabolic cart.

Breath by breath measurements of oxygen uptake (VO2) were converted into 15-breath

rolling averages and VO2max was taken as the highest value for a 15-breath rolling average

achieved during the test. This method was used in all but one of the included experiments

which was reanalysed for the present analysis (Metcalfe et al., 2012). For a small sample of

training participants (n=14) from one study (Metcalfe et al., 2016), pulmonary gas exchange

was measured using the Douglas Bag technique. It was considered appropriate to retain these

participants in this analysis because previous independent studies have reported similar test-

retest reliability for VO2max measured using Douglas Bags or breath by breath methods

(Katch et al., 1982; Phillips et al., 2017). The following secondary criteria were used to verify

a maximal effort: 1) volitional exhaustion, 2) a plateau in VO2 despite increasing workload,

3) RER >1.15 and 4) a maximal heart rate within 10 beats of age predicted maximum (220-

age). All participants achieved two or more of these criteria. 

2.3. Sprint Interval Training and No-Intervention Control

All training participants underwent a 6-week cycling based REHIT intervention with only

small differences across studies (Table 2). The majority of participants (n=104) completed



this supervised in an exercise physiology laboratory on a mechanically braked cycle

ergometer (Monark, Vansbro, Sweden) (Metcalfe et al., 2016, 2012; Nalçakan et al., 2018;

Thomas et al., 2020). Participants (n=13) in one study completed the intervention

unsupervised on a commercially available electronically braked cycle ergometer (CAROLTM,

Integrated Health Partners Ltd, London, UK) (Metcalfe et al., 2020). Each SIT session lasted

~10 min and consisted of low intensity cycling interspersed with two ‘all-out’ sprints against

a fixed resistance (between 10 and 20 s). In the 2-3 seconds prior to each ‘all-out’ sprint,

participants increased their pedal cadence to their maximal speed, the braking resistance was

then applied to the bike, and participants cycled as fast as they could for the duration of the

sprint. The majority of participants completed 3 sessions/week (n=76) but a subset completed

either 2 (n=29) or 4 (n=12) sessions/week. We recently demonstrated that the mean change in

VO2max with SIT was not different across training frequencies of 2, 3 or 4 sessions/week

(Thomas et al., 2020), so it was deemed appropriate to pool them together in this analysis. All

no-intervention control participants from the 3 separate studies were given the same

instructions to maintain their current physical activity levels and dietary patterns for the

duration of the study. 

Table 2 Training interventions applied in included studies

Metcalfe

2012

Metcalfe

2016

Nalcakan

2018

Thomas

2020

Metcalfe

2020

Intervention Duration (weeks) 6 6 6 6 6

Frequency (sessions / week) 3 3 3 2, 3 or 4 2

Total Session Duration (mins) 10 10 10 10 8:20-8:40

Sprints Per Session (n) 2 2 2 2 2

Braking Mass (% BM) 7.5 5 7.5 7.5 5

Sprint Duration Week 1 (s) 10 10 10 10 10

Sprint Duration Week 2 (s) 15 15 15 15 15

Sprint Duration Week 3 (s) 15 15 20 20 20

Sprint Duration Week 4 (s) 20 20 20 20 20

Sprint Duration Week 5 (s) 20 20 20 20 20

Sprint Duration Week 6 (s) 20 20 20 20 20

Warm-Up Duration (s) 180 180 120 100-110 120

Recovery Duration (s) 200-220 200-220 200-220 200-220 180

Cool Down Duration (s) 180 180 240 240 180

Intensity of Warm-Up, 

Recovery and Cool Down (W)
~60 W Unloaded Unloaded Unloaded ~25 W

Note: in the Metcalfe et al (2012 and 2016) studies, the first session only contained 1 x 10 s

sprint. Where a range of warm-up and recovery durations are presented, this is due to the

increase in sprint duration during initial training weeks. 



2.4. Statistical Analysis

2.4.1. Group Responses

The effect of SIT on VO2max was analysed using a two-way repeated measures analysis of

variance (group x time) performed in Graphpad Prism 8 for macOS (Version 8.4.2, San

Diego, CA, USA). Alpha was set at p<0.05 and effect size was calculated using Cohens d

(Hopkins et al., 2009).

2.4.2. Individual Variability

To characterise whether true individual responses to SIT were present, the standard deviation

(SD) of individual responses (SDIR) was calculated from the square root of the difference

between the square of the SD of the change (post minus pre) in the exercise training group

(SDex) and the control group (SDcon) (Atkinson and Batterham, 2015):

SDIR = √(SDEX)2‐–‐(SDCON)2

The SDIR was subsequently interpreted against thresholds for standardised mean change of

0.1 (small effect), 0.3 (moderate effect) and 0.6 (large effect) (Hopkins, 2015), and against

the smallest clinically worthwhile change (see below).

2.4.3. Classification of Non-, Uncertain and Positive Responders to SIT

The statistical procedures recommended by Swinton et al (Swinton et al., 2018) were

followed to classify individual changes in VO2max following SIT using 50% confidence

intervals (CIs) that were calculated using the typical error for repeated measurements of

VO2max from the control participants. The typical error (TE) was calculated using the

formula: 

TE = SDCON / √2

Typical error for relative VO2max was 1.30 ml·kg-1·min-1. For completeness, we classified

individual responses against a zero and clinically relevant response thresholds as this is more

likely to be informative of individual responsiveness in short term (e.g. 6 weeks) exercise

training studies where adaptations may still be accumulating (Islam et al., 2020). However,

when interpreting and discussing the data we take the more conservative approach of defining



responses against the smallest worthwhile change, alluding to responses against the zero

threshold where relevant. Responses were considered against two clinically relevant

thresholds of change to provide additional information on the proportion of individual

responses at different magnitudes: thresholds of 1.75 ml·kg-1·min-1 (equivalent to ~0.5

METs) and 3.5 ml·kg-1·min-1 (equivalent to ~1 MET) were applied based on the data of Lee

et al who demonstrated an ~8% and ~16% decrease in relative risk of CVD, respectively,

over ~11 years of follow up (Lee et al., 2011). Both of these thresholds have been applied in

previous studies on this topic (Bonafiglia et al., 2018). A responder was classified if the

entire 50% CI lay above the specified response threshold. In these instances, the use of a 50%

CI means that there is a 75% probability of a response for this individual, i.e. ‘likely’

(Hopkins, 2015). If the 50% CI crossed the response threshold then this was classified as an

‘uncertain response’, whilst a ‘non-responder’ was defined if the entire 50% CI lay below the

response threshold (Bonafiglia et al., 2018). All analysis of individual responses was

performed in Microsoft Excel and Graphpad Prism 8 for macOS (Version 8.4.2, San Diego,

CA, USA).



3. Results

3.1. Group Effects and SDIR

For relative VO2max, there were main effects of group (F=13.2, p<0.001) and time (F=35.7,

p<0.001) as well as a group x time interaction (F=39.8, p<0.001): mean relative VO2max

increased in the SIT group compared to the control group (Table 3 and Figure 1, d=0.43).

The SDIR for the change in relative VO2max following SIT compared to the control group

was 2.39 ml·kg-1·min-1 with an effect size of 0.32 (‘moderate’). The SDIR was not

substantially altered (2.30 ml·kg-1·min-1) when one potentially influential SIT participant

with a -5.99 ml·kg-1·min-1 decrease in VO2max was removed from the analysis (d=0.30,

‘moderate’). Thus, there is evidence of individual differences in VO2max trainability in

response to REHIT of a magnitude that exceeds the smallest clinically worthwhile effect of

1.75‐ml·kg-1·min-1.

Table 3 Changes in absolute and relative VO2max following SIT

Absolute (L·min-1) Relative (ml·kg-1·min-1)

Study Pre Post Delta Pre Post Delta

Training

Metcalfe

2012
2.19±0.57 2.48±0.60 0.29±0.13 33.5±4.9 38.3±4.8 4.7±2.7

Metcalfe

2016
2.54±0.65 2.78±0.67 0.24±0.23 35.0±7.8 38.1±7.9 3.0±3.3

Nalcakan

2018
2.77±0.75 3.04±0.75 0.27±0.28 39.0±6.9 42.3±6.5 3.3±3.3

Thomas 

2020
2.77±0.77 3.01±0.82 0.24±0.24 35.4±7.2 38.5±7.5 3.1±2.8

Metcalfe

2020
2.25±0.75 2.42±0.82 0.17±0.21 28.0±6.7 29.8±7.6 1.8±2.5

Control
Metcalfe

2012
2.32±0.64 2.37±0.77 0.05±0.18 33.8±5.5 34.2±6.0 0.3±2.3



Songsorn

2015

2.07±0.69 2.08±0.68 0.01±0.10 32.0±5.8 32.2±6.0 0.2±1.6

Metcalfe

2020
2.26±0.70 2.20±0.71 -0.06±0.09 28.1±7.3 27.4±7.2 -0.7±1.4

Pooled
Training 2.59±0.73 2.83±0.77 0.24±0.23 34.8±7.5 37.9±7.9 3.1±3.0

Control 2.21±0.67 2.22±0.71 0.00±0.14 31.5±6.5 31.5±6.8 -0.1±1.8

Data are presented as mean ± SD

3.2. Classification of Non-, Uncertain and Positive Responders to SIT

When considered against a threshold of zero, 5/117 (4%) of participants were classified as

likely non-responders, 29/117 (25%) were classified as uncertain responders, and 83/117

(71%) of the participants showed an increase in VO2max that was likely higher than zero

(Figure 2A). When considered against the minimal clinically relevant threshold, 18%

(21/117) of participants were likely non-responders, 39/117 (33%) were classified as

uncertain responders, and 57/117 (49%) showed an increase likely higher than the minimal

clinically relevant threshold of 1.75 ml·kg-1·min-1 (Figure 2B). Furthermore, 33 out of those

57 (i.e. 33/117; 28%) of those participants showed an increase likely higher than 3.5 ml·kg-

1·min-1 (Figure 2B).



4. Discussion

Individual variability in the change in VO2max following exercise training has important

implications for optimising and personalising exercise prescriptions to improve health. This

is the first study to report the heterogeneity of response and the incidence of non-response to

a genuinely time-efficient SIT protocol that has been shown to be efficacious at a group level

in both supervised lab (Metcalfe et al., 2016, 2012; Nalçakan et al., 2018; Thomas et al.,

2020) and unsupervised real-world (Metcalfe et al., 2020) settings. Importantly, for the first

time, we demonstrate statistically that inter-individual differences in training-induced

changes in VO2max following REHIT exceed the technical, day-to-day biological, and

random within-subjects variability of VO2max assessment over a similar time frame. Of

particular note, we report a non-response rate of 18% and that 49% of individuals

demonstrate an increase in VO2max that is likely higher than the smallest clinically

worthwhile difference. 

Several previous studies have quantified non-response rates to a high dose of aerobic exercise

training and to HIIT and SIT protocols involving a greater number/duration of high-intensity

or all-out sprint efforts (Astorino and Schubert, 2014; Bonafiglia et al., 2016; Gurd et al.,

2016; Islam et al., 2020; Phillips et al., 2017; Sisson et al., 2009; Williams et al., 2019).

Comparisons of non-response rates between different studies and exercise protocols (in

similar populations) requires consideration of the mean change, the SDIR and the threshold

applied to quantify non-response (Atkinson et al., 2019). This makes direct comparisons

between the current data and these previous HIIT and SIT studies somewhat challenging

because they have either not quantified the SDIR and/or different thresholds have been

applied to quantify non-response, including a change <1xTE (i.e. <0.86 ml·kg-1·min-1;



(Phillips et al., 2017)), <2xTE (i.e. <1.74 ml·kg-1·min-1; (Gurd et al., 2016)), <1 coefficient of

variation (CV) of repeated measurement (i.e. <~1.3 ml·kg-1·min-1; (Astorino and Schubert,

2014)), or <SWC minus 1 x TE (i.e. <1.80 ml·kg-1·min-1; (Williams et al., 2019)). In the

largest pooled analysis of HIIT (n=299) and SIT (n=116) to date, Williams et al reported a

mean change and non-response rate of +3.3 ml·kg-1·min-1 and 35% for HIIT, and +2.5 ml·kg-

1·min-1and 52% for SIT, respectively, using a threshold of <1.8 ml·kg-1·min-1 to define a non-

responder (Williams et al., 2019). If we apply the same criteria to the current study this would

yield a non-response rate of 38% (with a pooled mean change of +3.1 ml·kg-1·min-1). Thus, it

is possible to conclude that the proportion of likely non-responders observed with REHIT is

similar to and not greater than other SIT and HIIT protocols involving a greater

number/duration of high-intensity or all-out sprint efforts (Williams et al., 2019).

The fact that similar rates of non-response are observed when applying HIIT and SIT

protocols with varying numbers and durations of sprints implies that non-response for

VO2max is not an artefact caused by an insufficient dose of exercise training. If this were the

case, then the non-response rate would be expected to decrease with an increased

number/duration of sprints and hence a greater training ‘stimulus’. The application of sprints

of an ‘all-out’ intensity adds further weight to this argument because this likely overcomes

any issues regarding the standardisation of exercise intensity (or more specifically the

homeostatic disruption) across individuals during each acute training session. Whilst

individual differences in the homeostatic disturbance can be expected with MICT

standardised using a % of HRmax or VO2max, and this may have subsequent implications for

the adaptive response (Jamnick et al., 2020; Montero and Lundby, 2017; Preobrazenski et al.,

2018), the disruption in homeostasis with SIT / REHIT is always likely to be severe and

hence sufficient to switch on signalling pathways that underpin adaptation (if possible for that

individual). Indeed, the fact that group level increases in VO2max are similar between SIT

protocols applying 2-3 sprints compared with protocols applying 6-8 sprints (Vollaard et al.,

2017) implies that the adaptive signalling pathways responsible for increasing VO2max in

response to SIT become ‘saturated’ with only a small number of acute ‘all-out’ sprint efforts

(Vollaard and Metcalfe, 2017). Taken together, we contend that non responders for VO2max

in response to exercise training are a real physiological phenomenon and our data show they

are observed in response to REHIT/SIT. That said, it remains unknown whether non-

responders to REHIT/SIT for changes in VO2max are also non-responders for other health

markers (i.e. universal non responders), but previous work looking at interindividual



differences in response to aerobic exercise training suggests that this may not be the case

(Vollaard et al., 2009). Future studies need to clearly establish whether non-responders to

REHIT/SIT would demonstrate adaptations to different types of exercise, such as MICT.

Although previous studies have attempted to examine this (Bonafiglia et al., 2016), the small

sample size limits the conclusions that can be made at this stage. 

Our data show that ~half of individuals are likely to show an increase in VO2max that is

greater than the smallest worthwhile change after only 6 weeks of training. This is a striking

observation given that REHIT involves less than 10 min of sprint exercise and a total exercise

time of 3 hours over that 6-week period. Nevertheless, it is worth noting that this represents a

relatively short-term training intervention. At a group level, the magnitude of increase in

VO2max following SIT that occurs from 6 to 12 weeks is similar to that observed from 0 to 6

weeks of the intervention (Gillen et al., 2016) and this raises important questions about

individual differences in the rate at which adaptations are accrued. Indeed, in our analysis, a

proportion of individuals (26/117; 22%) demonstrated a change that was likely >0 ml·kg-

1·min-1 but not of a magnitude which exceeded the minimal clinically important difference

threshold of 1.75 ml·kg-1·min-1. Whilst it would be expected that non-responders would

continue to show limited adaptation to a longer intervention, it will be important to determine

whether individuals showing a slower rate of adaptation at 6 weeks would continue to accrue

adaptations (at this lower rate) and would demonstrate a clinically meaningful magnitude of

response at a later time point. 

The mechanisms that explain the individual variation in response to REHIT are unclear and

cannot be determined from the present study. As the training interventions applied were

unable (due to logistical reasons) to control the majority of environmental factors outside of

the training intervention (e.g., each participant’s pattern of nutrition, sleep, stress etc.), it can

be expected that some of the variability in adaptation between individuals is explained by

(unquantified) environment-training interactions. As an example, the dose, type and timing of

nutrition can have a powerful impact on the skeletal muscle signalling response to acute

exercise (Cluberton et al., 2005; Guerra et al., 2010; Stocks et al., 2018) and, hence, can

modify adaptation to exercise training. If such variables are not controlled across individuals,

then it can be expected that this will introduce a level of individual variability in adaptation.

This may also explain, at least in part, the poor reproducibility of individual responses to



repeated (identical) exercise training interventions in the same sample of participants (Del

Giudice et al., 2020).

On the other hand, it is also clear that there is a heritable component to exercise trainability

(Bouchard, 2019; Bouchard et al., 1999; Sarzynski et al., 2017; Timmons et al., 2010). The

majority of this evidence comes from studies of the training response to aerobic and

resistance exercise and the relevance of this information to SIT remains unknown. Indeed, we

still do not know whether REHIT/SIT enhances VO2max through mechanisms that are

similar to or distinct from MICT (Gibala and Little, 2019; Vollaard and Metcalfe, 2017).

However, the inter-individual variability observed in the present study can be used by future

investigations interested in identifying (molecular) predictors of response. If responders vs.

non-responders to a specific intervention (e.g. SIT/REHIT) can be identified, then contrasting

traits / molecular signatures in groups of responders vs. non-responders provides a strong

approach to identify potential physiological / genetic / epigenetic factors that determine the

interindividual variability in training response (Keller et al., 2007). Such studies are needed

to enable personalised medicine, for example, to enable personalised advice on effective

interventions (Keller et al., 2007; Timmons et al., 2010) and can be a powerful way to

elucidate molecular mechanisms of training adaptations (Keller et al., 2011, 2007). An

improved understanding of the molecular mechanisms of adaptation to SIT would be

invaluable in the effort to optimise SIT protocols to enable the greatest adaptations with

minimal required effort and time-commitment. 

There are a number of limitations to the current analysis that should be considered. Firstly,

and most importantly, whilst the large sample size is a strength of this study, this is a pooled

dataset from six independent studies and there were minor differences in training protocols,

testing procedures, and the duration of the control intervention (4-weeks for n=14 and 6-

weeks for n=26) between some of the studies (described in full in the methods). It is possible

that these differences may affect the validity of the SDIR estimate, which assumes that all

sources of variability are equal between the exercise and control groups except that the

exercise group underwent exercise training (Atkinson and Batterham, 2015; Bonafiglia et al.,

2019). However, two pieces of information can help to mitigate these concerns. Firstly, the

SD of the training-induced change in VO2max was comparable between studies (Table 3).

Secondly, we performed a sensitivity analysis to examine how excluding the 4-week control

participants impacts the SDIR calculation. We found a similar SDIR estimate of 2.30 ml·kg-



1·min-1 compared to 2.39 ml·kg-1·min-1 when all control participants were included. Similarly,

a comparable SDIR of 2.36 ml·kg-1·min-1 was found when training participants undergoing

VO2max assessment with Douglas Bags (n=14) were excluded from the analysis. Thus, these

differences in methodology across the pooled independent studies to do not appear to greatly

impact the validity of our findings. 

Another limitation is that most of the studies involved supervised, lab-based exercise, so it

remains unclear whether the results would be the same in real-world settings and this will be

important to address in future studies. Furthermore, this analysis is also largely limited to

young sedentary but healthy men and women and it is not possible to determine whether

different populations (e.g., lean vs overweight, young vs old, men vs women) may show

different levels of response / non-response. Finally, it should also be noted that other

important health markers were not considered in this analysis and so at present it remains

unknown whether non-responders for VO2max in response to SIT would be able to improve

markers of cardiometabolic health.

In conclusion, we demonstrate for the first time that the well described increase in VO2max

observed following REHIT at the group level, is subject to substantial variability in

magnitude at an individual level. This is an important observation with potential future

implications for prescribing SIT/REHIT as an intervention for improving health and can be

harnessed by future studies aiming to elucidate the mechanisms by which REHIT improves

VO2max.
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Figure Legends:

Figure 1 Changes in VO2max following SIT (panel A) and following a no-intervention

control (panel B). Data is presented as mean and SD (bars) on the primary y-axis, or as

individual change scores (black dots) on the secondary y-axis. 

Figure 2 Individual changes in VO2max following SIT classified against either a zero (panel

A) or clinically relevant thresholds of 1.75 ml·kg-1·min-1 (light blue dashed and dotted line)

and 3.5 ml·kg-1·min-1 (dark blue dashed line) (panel B). Dots are individual changes and error

bars are 50% confidence intervals. Red square = likely non-responder, orange diamond =

uncertain responder, light blue circle = likely responder (>0 ml·kg-1·min-1 in panel A and

>1.75 ml·kg-1·min-1 in panel B). In panel B, dark blue circle = likely responder >3.5 ml·kg-

1·min-1. Pie charts show the absolute proportion (n) of participants in each category.

Conflict of Interest Statement:

Dr. Metcalfe reports grants from Welsh Crucible and The Diabetes Research and Wellness

Foundation, outside the submitted work; Dr. Vollaard has nothing to disclose.




