1,390 research outputs found

    Kinetic model of II-VI(001) semiconductor surfaces: Growth rates in atomic layer epitaxy

    Get PDF
    We present a zinc-blende lattice gas model of II-VI(001) surfaces, which is investigated by means of Kinetic Monte Carlo (KMC) simulations. Anisotropic effective interactions between surface metal atoms allow for the description of, e.g., the sublimation of CdTe(001), including the reconstruction of Cd-terminated surfaces and its dependence on the substrate temperature T. Our model also includes Te-dimerization and the potential presence of excess Te in a reservoir of weakly bound atoms at the surface. We study the self-regulation of atomic layer epitaxy (ALE) and demonstrate how the interplay of the reservoir occupation with the surface kinetics results in two different regimes: at high T the growth rate is limited to 0.5 layers per ALE cycle, whereas at low enough T each cycle adds a complete layer of CdTe. The transition between the two regimes occurs at a characteristic temperature and its dependence on external parameters is studied. Comparing the temperature dependence of the ALE growth rate in our model with experimental results for CdTe we find qualitative agreement.Comment: 9 pages (REVTeX), 8 figures (EPS). Content revised, references added, typos correcte

    The First Training Workshop on Permafrost Research Methods: IMPETUS 2007 : OSL-APECS-PYRN Training Workshop; St. Petersburg, Russia, 29 November to 2 December 2007

    Get PDF
    Fifty young researchers from 14 countries met in St. Petersburg, Russia, to learn about the latest methods used in permafrost research and engineering and to discuss future plans to address climate change issues in permafrost areas. This workshop was an official International Polar Year (IPY) event organized jointly by the Otto Schmidt Laboratory for Polar and Marine Sciences (OSL) in St. Petersburg, the Permafrost Young Researchers Network (PYRN), and the Association of Polar Early Career Scientists (APECS). The workshop provided insights into the latest techniques and methods used in permafrost research in fields as diverse as permafrost modeling, investigations of mountain ice segregation, bubbling from thermokarst lakes, and submarine permafrost detection. It brought together experts to provide young investigators with a multidisciplinary and cross-border perspective on permafrost research, a much needed approach in a discipline marked by strong research history yet strongly entangled within national borders. Presentations and speaker biographies are now available on the conference Web site (http://pyrn.ways.org/activities/pyrn-meetings/2007-saint-petersburg)

    Cultivating compliance: governance of North Indian organic basmati smallholders in a global value chain

    Get PDF
    Focusing on a global value chain (GVC) for organic basmati rice, we study how farmers’ practices are governed through product and process standards, organic certification protocols, and contracts with buyer firms. We analyze how farmers’ entry into the GVC reconfigures their agencements (defined as heterogeneous arrangements of human and nonhuman agencies which are associated with each other). These reconfigurations entail the severance of some associations among procedural and material elements of the agencements and the formation of new associations, in order to produce cultivation practices that are accurately described by the GVC’s standards and protocols. Based on ethnography of two farmers in Uttarakhand, North India, we find that the same standards were enacted differently on the two farmers’ fields, producing variable degrees of (selective) compliance with the ‘official’ GVC standards. We argue that the disjuncture between the ‘official’ scripts of the standards and actual cultivation practices must be nurtured to allow farmers’ agencements to align their practices with local sociotechnical relations and farm ecology. Furthermore, we find that compliance and disjuncture were facilitated by many practices and associations that were officially ungoverned by the GVC

    A lattice gas model of II-VI(001) semiconductor surfaces

    Get PDF
    We introduce an anisotropic two-dimensional lattice gas model of metal terminated II-IV(001) seminconductor surfaces. Important properties of this class of materials are represented by effective NN and NNN interactions, which result in the competition of two vacancy structures on the surface. We demonstrate that the experimentally observed c(2x2)-(2x1) transition of the CdTe(001) surface can be understood as a phase transition in thermal equilbrium. The model is studied by means of transfer matrix and Monte Carlo techniques. The analysis shows that the small energy difference of the competing reconstructions determines to a large extent the nature of the different phases. Possible implications for further experimental research are discussed.Comment: 7 pages, 2 figure

    Nanoscale Observation of Alkane Delayering

    Get PDF
    Noncontact Atomic Force Microscopy and synchrotron x-ray scattering measurements on dotriacontane (n-C32H66 or C32) films adsorbed on SiO2-coated Si(100) wafers reveal a narrow temperature range near the bulk C32 melting point Tb in which a monolayer phase of C32 molecules oriented perpendicular to surface is stable. This monolayer phase undergoes a delayering transition to a three-dimensional (3D) fluid phase on heating to just above Tb and to a solid 3D phase on cooling below Tb. An equilibrium phase diagram provides a useful framework for interpreting the unusual spreading and receding of the monolayer observed in transitions to and from the respective 3D phases.Comment: 13 pages, 3 figure

    A superconducting-nanowire 3-terminal electronic device

    Full text link
    In existing superconducting electronic systems, Josephson junctions play a central role in processing and transmitting small-amplitude electrical signals. However, Josephson-junction-based devices have a number of limitations including: (1) sensitivity to magnetic fields, (2) limited gain, (3) inability to drive large impedances, and (4) difficulty in controlling the junction critical current (which depends sensitively on sub-Angstrom-scale thickness variation of the tunneling barrier). Here we present a nanowire-based superconducting electronic device, which we call the nanocryotron (nTron), that does not rely on Josephson junctions and can be patterned from a single thin film of superconducting material with conventional electron-beam lithography. The nTron is a 3-terminal, T-shaped planar device with a gain of ~20 that is capable of driving impedances of more than 100 k{\Omega}, and operates in typical ambient magnetic fields at temperatures of 4.2K. The device uses a localized, Joule-heated hotspot formed in the gate to modulate current flow in a perpendicular superconducting channel. We have characterized the nTron, matched it to a theoretical framework, and applied it both as a digital logic element in a half-adder circuit, and as a digital amplifier for superconducting nanowire single-photon detectors pulses. The nTron has immediate applications in classical and quantum communications, photon sensing and astronomy, and its performance characteristics make it compatible with existing superconducting technologies. Furthermore, because the hotspot effect occurs in all known superconductors, we expect the design to be extensible to other materials, providing a path to digital logic, switching, and amplification in high-temperature superconductors
    • 

    corecore