58 research outputs found
Oscillatory porewater bioadvection in marine sediments induced by hydraulic activities of Arenicola marina
We employed real‐time pressure recording and high temporal resolution two‐dimensional oxygen imaging to characterize the porewater bioadvection related to hydraulic activities of Arenicola marina, a widespread representative of benthic macrofauna. Behavior‐specific positive and negative pressure oscillations and hydraulic pulses resulted in bidirectional porewater flow and highly dynamic redox oscillations on the scale of minutes. Pumping of water by the worm into its blind‐ending burrow pressurized the sediment and caused sediment oxygenation at depth and the exit of anoxic porewater into the overlying water. The sediment volume that was affected by bioadvective transport of oxygen and the porewater flow patterns varied strongly among sediment types. In low‐permeability sediments, localized plumes of anoxic porewater ascended from the sediment, presumably through sedimentary cracks, while porewater flowed evenly through highly permeable sediments. Hydraulic behaviors that moved water out through the open tail shaft caused a reduction of porewater pressures below the hydrostatic baseline which resulted in the collapse of plumes and enhanced oxygen penetration into the surficial sediments. Porewater bioadvection and the related perfusing and oscillatory phenomena will affect a variety of biogeochemical and ecological processes, including organic matter mineralization, benthic recruitment, and prey localization. We suggest that bidirectional porewater bioadvection and the associated transient geochemical conditions are prevalent features of biogenically active sediments
Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments
We describe a novel, field-deployable hyperspectral imaging system, called Hypersub, that allows noninvasive in situ mapping of the microphytobenthos (MPB) biomass distribution with a high spatial (sub-millimeter) and temporal (minutes) resolution over areas of 1 x 1 m. The biomass is derived from a log-transformed and near-infrared corrected reflectance hyperspectral index, which exhibits a linear relationship (R-2 > 0.97) with the chlorophyll a (Ch1 a) concentration in the euphotic zone of the sediment and depends on the sediment grain size. Deployments of the system revealed that due to factors such as sediment topography, bioturbation, and grazing, the distribution of MPB in intertidal sediments is remarkably heterogeneous, with Ch1 a concentrations varying laterally by up to 400% of the average value over a distance of 1 cm. Furthermore, due to tidal cycling and diel light variability, MPB concentrations in the top 1 mm of sediments are very dynamic, changing by 40-80% over a few hours due to vertical migration. We argue that the high-resolution hyperspectral imaging method overcomes the inadequate resolution of traditional methods based on sedimentary Ch1 a extraction, and thus helps improve our understanding of the processes that control benthic primary production in coastal sediments
Clam feeding plasticity reduces herbivore vulnerability to ocean warming and acidification
Ocean warming and acidification affect species populations, but how interactions within communities are affected and how this translates into ecosystem functioning and resilience remain poorly understood. Here we demonstrate that experimental ocean warming and acidification significantly alters the interaction network among porewater nutrients, primary producers, herbivores and burrowing invertebrates in a seafloor sediment community, and is linked to behavioural plasticity in the clam Scrobicularia plana. Warming and acidification induced a shift in the clam's feeding mode from predominantly suspension feeding under ambient conditions to deposit feeding with cascading effects on nutrient supply to primary producers. Surface-dwelling invertebrates were more tolerant to warming and acidification in the presence of S. plana, most probably due to the stimulatory effect of the clam on their microalgal food resources. This study demonstrates that predictions of population resilience to climate change require consideration of non-lethal effects such as behavioural changes of key species.
Changes in ocean temperature and pH will impact on species, as well as impacting on community interactions. Here warming and acidification cause a clam species to change their feeding mode, with cascading effects for the marine sedimentary food web
Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
Benthic pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal variability
This study used microelectrodes to record pH profiles in fresh shelf sea sediment cores collected across a range of different sediment types within the Celtic Sea. Spatial and temporal variability was captured during repeated measurements in 2014 and 2015. Concurrently recorded oxygen microelectrode profiles and other sedimentary parameters provide a detailed context for interpretation of the pH data. Clear differences in profiles were observed between sediment type, location and season. Notably, very steep pH gradients exist within the surface sediments (10–20 mm), where decreases greater than 0.5 pH units were observed. Steep gradients were particularly apparent in fine cohesive sediments, less so in permeable sandier matrices. We hypothesise that the gradients are likely caused by aerobic organic matter respiration close to the sediment–water interface or oxidation of reduced species at the base of the oxic zone (NH4+, Mn2+, Fe2+, S−). Statistical analysis suggests the variability in the depth of the pH minima is controlled spatially by the oxygen penetration depth, and seasonally by the input and remineralisation of deposited organic phytodetritus. Below the pH minima the observed pH remained consistently low to maximum electrode penetration (ca. 60 mm), indicating an absence of sub-oxic processes generating H+ or balanced removal processes within this layer. Thus, a climatology of sediment surface porewater pH is provided against which to examine biogeochemical processes. This enhances our understanding of benthic pH processes, particularly in the context of human impacts, seabed integrity, and future climate changes, providing vital information for modelling benthic response under future climate scenarios
- …