2,793 research outputs found

    Chord Label Personalization through Deep Learning of Integrated Harmonic Interval-based Representations

    Get PDF
    The increasing accuracy of automatic chord estimation systems, the availability of vast amounts of heterogeneous reference annotations, and insights from annotator subjectivity research make chord label personalization increasingly important. Nevertheless, automatic chord estimation systems are historically exclusively trained and evaluated on a single reference annotation. We introduce a first approach to automatic chord label personalization by modeling subjectivity through deep learning of a harmonic interval-based chord label representation. After integrating these representations from multiple annotators, we can accurately personalize chord labels for individual annotators from a single model and the annotators' chord label vocabulary. Furthermore, we show that chord personalization using multiple reference annotations outperforms using a single reference annotation.Comment: Proceedings of the First International Conference on Deep Learning and Music, Anchorage, US, May, 2017 (arXiv:1706.08675v1 [cs.NE]

    Development of learning objectives for neurology in a veterinary curriculum: part I: undergraduates

    Get PDF
    Background With an increasing caseload of veterinary neurology patients in first opinion practice, there is a requirement to establish relevant learning objectives for veterinary neurology encompassing knowledge, skills and attitudes for veterinary undergraduate students in Europe. With help of experts in veterinary neurology from the European College of Veterinary Neurology (ECVN) and the European Society of Veterinary Neurology (ESVN) a survey of veterinary neurologic learning objectives using a modified Delphi method was conducted. The first phase comprised the development of a draft job description and learning objectives by a working group established by the ECVN. In the second phase, a quantitative questionnaire (multiple choice, Likert scale and free text) covering 140 learning objectives and subdivided into 8 categories was sent to 341 ESVN and ECVN members and a return rate of 62% (n = 213/341) was achieved. Results Of these 140 learning objectives ECVN Diplomates and ESVN members considered 42 (30%) objectives as not necessary for standard clinical veterinary neurology training, 94 (67%) were graded to be learned at a beginner level and 4 (3%) at an advanced level. The following objectives were interpreted as the most important day one skills: interpret laboratory tests, perform a neurological examination and establish a neuroanatomical localization. In this survey the three most important diseases of the central nervous system included epilepsy, intervertebral disc disease and inflammatory diseases. The three most important diseases of the peripheral nervous system included polyradiculoneuritis, myasthenia gravis and toxic neuropathies. Conclusions The results of this study should help to reform the veterinary curriculum regarding neurology and may reduce the phenomenon of “Neurophobia”.</p

    Melting dynamics of large ice balls in a turbulent swirling flow

    Full text link
    We study the melting dynamics of large ice balls in a turbulent von Karman flow at very high Reynolds number. Using an optical shadowgraphy setup, we record the time evolution of particle sizes. We study the heat transfer as a function of the particle scale Reynolds number for three cases: fixed ice balls melting in a region of strong turbulence with zero mean flow, fixed ice balls melting under the action of a strong mean flow with lower fluctuations, and ice balls freely advected in the whole flow. For the fixed particles cases, heat transfer is observed to be much stronger than in laminar flows, the Nusselt number behaving as a power law of the Reynolds number of exponent 0.8. For freely advected ice balls, the turbulent transfer is further enhanced and the Nusselt number is proportional to the Reynolds number. The surface heat flux is then independent of the particles size, leading to an ultimate regime of heat transfer reached when the thermal boundary layer is fully turbulent

    Dorsal laminectomy for treatment of cervical vertebral stenotic myelopathy in an alpaca

    Get PDF

    Non-thermal Origin of the EUV and Soft X-rays from the Coma Cluster - Cosmic Rays in Equipartition with the Thermal Medium

    Get PDF
    The role of cosmic rays (CR) in the formation and evolution of clusters of galaxies has been much debated. It may well be related to other fundamental questions, such as the mechanism which heats and virializes the intracluster medium (ICM), and the frequency at which the ICM is shocked. There is now compelling evidence both from the cluster soft excess (CSE) and the `hard-tail' emissions at energies above 10 keV, that many clusters are luminous sources of inverse-Compton (IC) emission. This is the first direct measurement of cluster CR: the technique is free from our uncertainties in the ICM magnetic field, and is not limited to the small subset of clusters which exhibit radio halos. The CSE emitting electrons fall within a crucial decade of energy where they have the least spectral evolution, and where most of the CR pressure resides. However their survival times do not date them back to the relic CR population. By using the CSE data of the Coma cluster, we demonstrate that the CR are energetically as important as the thermal ICM: the two components are in pressure equiparition. Thus, contrary to previous expectations, CR are a dominant component of the ICM, and their origin and effects should be explored. The best-fit CR spectral index is in agreement with the Galactic value.Comment: ApJ accepted; 10 pages LaTeX; 2 figures and 1 table in PostScrip

    Thermal and non-thermal nature of the soft excess emission from Sersic 159-03 observed with XMM-Newton

    Full text link
    Several nearby clusters exhibit an excess of soft X-ray radiation which cannot be attributed to the hot virialized intra-cluster medium. There is no consensus to date on the origin of the excess emission: it could be either of thermal origin, or due to an inverse Compton scattering of the cosmic microwave background. Using high resolution XMM-Newton data of Sersic 159-03 we first show that strong soft excess emission is detected out to a radial distance of 0.9 Mpc. The data are interpreted using the two viable models available, i.e., by invoking a warm reservoir of thermal gas, or relativistic electrons which are part of a cosmic ray population. The thermal interpretation of the excess emission, slightly favored by the goodness-of-fit analysis, indicates that the warm gas responsible for the emission is high in mass and low in metallicity.Comment: ApJ in pres

    Development of learning objectives for neurology in a veterinary curriculum: Part II: Postgraduates

    Get PDF
    Background: Specialization in veterinary medicine in Europe is organized through the Colleges of the European Board of Veterinary Specialization. To inform updating of the curriculum for residents of the European College of Veterinary Neurology (ECVN) job analysis was used. Defining job competencies of diploma holders in veterinary neurology can be used as references for curriculum design of resident training. With the support of the diplomates of the ECVN and the members of the European Society of Veterinary Neurology (ESVN) a mixed-method research, including a qualitative search of objectives and quantitative ranking with 149 Likert scale questions and 48 free text questions in 9 categories in a survey was conducted. In addition, opinions of different groups were subjected to statistical analysis and the result compared. Results: A return rate of 62% (n = 213/341) was achieved. Of the competencies identified by the Delphi process, 75% objectives were expected to attain expert level; 24% attain advanced level; 1% entry level. In addition, the exercise described the 11 highly ranked competencies, the 3 most frequently seen diseases of the central and peripheral nervous systems and the most frequently used immunosuppressive, antiepileptic and chemotherapeutic drugs. Conclusion: The outcomes of this “Delphi job analysis” provide a powerful tool to align the curriculum for ECVN resident training and can be adapted to the required job competencies, based on expectations. The expectation is that for majority of these competencies diplomates should attain an expert level. Besides knowledge and clinical skills, residents and diplomates are expected to demonstrate high standards in teaching and communication. The results of this study will help to create a European curriculum for postgraduate education in veterinary neurology

    Nonlinear shock acceleration beyond the Bohm limit

    Full text link
    We suggest a physical mechanism whereby the acceleration time of cosmic rays by shock waves can be significantly reduced. This creates the possibility of particle acceleration beyond the knee energy at ~10^15eV. The acceleration results from a nonlinear modification of the flow ahead of the shock supported by particles already accelerated to the knee momentum at p ~ p_*. The particles gain energy by bouncing off converging magnetic irregularities frozen into the flow in the shock precursor and not so much by re-crossing the shock itself. The acceleration rate is thus determined by the gradient of the flow velocity and turns out to be formally independent of the particle mean free path (m.f.p.). The velocity gradient is, in turn, set by the knee-particles at p ~ p_* as having the dominant contribution to the CR pressure. Since it is independent of the m.f.p., the acceleration rate of particles above the knee does not decrease with energy, unlike in the linear acceleration regime. The reason for the knee formation at p ~ p_* is that particles with p>pp > p_* are effectively confined to the shock precursor only while they are within limited domains in the momentum space, while other particles fall into ``loss-islands'', similar to the ``loss-cone'' of magnetic traps. This structure of the momentum space is due to the character of the scattering magnetic irregularities. They are formed by a train of shock waves that naturally emerge from unstably growing and steepening magnetosonic waves or as a result of acoustic instability of the CR precursor. These losses steepen the spectrum above the knee, which also prevents the shock width from increasing with the maximum particle energy.Comment: aastex, 13 eps figure
    corecore