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The increasing accuracy of automatic chord estimation systems, the availability of
vast amounts of heterogeneous reference annotations, and insights from annotator
subjectivity research make chord label personalization increasingly important. Nev-
ertheless, automatic chord estimation systems are historically exclusively trained
and evaluated on a single reference annotation. We introduce a first approach
to automatic chord label personalization by modeling subjectivity through deep
learning of a harmonic interval-based chord label representation. After integrating
these representations from multiple annotators, we can accurately personalize chord
labels for individual annotators from a single model and the annotators’ chord la-
bel vocabulary. Furthermore, we show that chord personalization using multiple
reference annotations outperforms using a single reference annotation.
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1 Introduction

Annotator subjectivity makes it hard to derive one-size-fits-all chord labels. Annotators tran-
scribing chords from a recording by ear can disagree because of personal preference, bias
towards a particular instrument, and because harmony can be ambiguous perceptually as well
as theoretically by definition [Schoenberg, 1978, Meyer, 1957]. These reasons contributed to
annotators creating large amounts of heterogeneous chord label reference annotations. For
example, on-line repositories for popular songs often contain multiple, heterogeneous versions.
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One approach to the problem of finding the appropriate chord labels in a large number of
heterogeneous chord label sequences for the same song is data fusion. Data fusion research
shows that knowledge shared between sources can be integrated to produce a unified view
that can outperform individual sources [Dong et al., 2009]. In a musical application, it was
found that integrating the output of multiple Automatic Chord Estimation (ace) algorithms
results in chord label sequences that outperform the individual sequences when compared to a
single ground truth [Koops et al., 2016]. Nevertheless, this approach is built on the intuition
that one single correct annotation exists that is best for everybody, on which ace systems are
almost exclusively trained. Such reference annotation is either compiled by a single person
[Mauch et al., 2009], or unified from multiple opinions [Burgoyne et al., 2011]. Although most
of the creators of these datasets warn for subjectivity and ambiguity, they are in practice used
as the de facto ground truth in MIR chord research and tasks (e.g. mirex ace).

On the other hand, it can also be argued that there is no single best reference annotation,
and that chord labels are correct with varying degrees of “goodness-of-fit” depending on the
target audience [Ni et al., 2013]. In particular for richly orchestrated, harmonically complex
music, different chord labels can be chosen for a part, depending on the instrument, voicing or
the annotators’ chord label vocabulary.

In this paper, we propose a solution to the problem of finding appropriate chord labels
in multiple, subjective heterogeneous reference annotations for the same song. We propose
an automatic audio chord label estimation and personalization technique using the harmonic
content shared between annotators. From deep learned shared harmonic interval profiles,
we can create chord labels that match a particular annotator vocabulary, thereby providing
an annotator with familiar, and personal chord labels. We test our approach on a 20-song
dataset with multiple reference annotations, created by annotators who use different chord
label vocabularies. We show that by taking into account annotator subjectivity while training
our ace model, we can provide personalized chord labels for each annotator.

Contribution. The contribution of this paper is twofold. First, we introduce an approach to
automatic chord label personalization by taking into account annotator subjectivity. Through
this end, we introduce a harmonic interval-based mid-level representation that captures har-
monic intervals found in chord labels. Secondly, we show that after integrating these features
from multiple annotators and deep learning, we can accurately personalize chord labels for indi-
vidual annotators. Finally, we show that chord label personalization using integrated features
outperforms personalization from a commonly used reference annotation.

2 Deep Learning Harmonic Interval Subjectivity

For the goal of chord label personalization, we create an harmonic bird’s-eye view from different
reference annotations, by integrating their chord labels. More specifically, we introduce a new
feature that captures the shared harmonic interval profile of multiple chord labels, which we
deep learn from audio. First, we extract Constant Q (cqt) features from audio, then we
calculate Shared Harmonic Interval Profile (ship) representations from multiple chord label
reference annotations corresponding to the cqt frames. Finally, we train a deep neural network
to associate a context window of cqt to ship features.

From audio, we calculate a time-frequency representation where the frequency bins are
geometrically spaced and ratios of the center frequencies to bandwidths of all bins are equal,
called a Constant Q (cqt) spectral transform [Schörkhuber and Klapuri, 2010]. We calculate
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C C# D D# E F F# G G# A A# B N ♯3 ♭3 ⋆3 ♯7 ♭7 ⋆7
G:maj7 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0
G:maj 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
G:maj7 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0
G:minmaj7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
ship 0 0 0 0 0 0 0 1 0 0 0 0 0 0.75 0.25 0 0.75 0 0.25

Table 1: Interval profiles from root notes of hips of different chord labels and their ship

these cqt features with a hop length of 4096 samples, a minimum frequency of ≈ 32.7 Hz (C1
note), 24× 8 = 192 bins, 24 bins per octave. This way we can capture pitches spanning from
low notes to 8 octaves above C1. Two bins per semitone allows for slight tuning variations.

To personalize chord labels from an arbitrarily sized vocabulary for an arbitrary number of
annotators, we need a chord representation that (i) is robust against label sparsity, and (ii) cap-
tures an integrated view of all annotators. We propose a new representation that captures a
harmonic interval profile (hip) of chord labels, instead of directly learning a chord label clas-
sifier. The rationale behind the hip is that most chords can be reduced to the root note and
the stacked triadic intervals, where the amount and combination of triadic interval determines
the chord quality and possible extensions. The hip captures this intuition by reducing a chord
label to its root and harmonic interval profile. hip is a concatenation of multiple one-hot
vectors that denote a root note and additional harmonic intervals relative to the root that are
expressed in the chord label.

In this paper, we use a concatenation of three one-hot vectors: roots, thirds and sevenths.
The first vector is of size 13 and denotes the 12 chromatic root notes (C. . . B) + a “no chord”
(N) bin. The second vector is of size 3 and denotes if the chord denoted by the chord label
contains a major third (♯3), minor third (♭3), or no third (⋆3) relative to the root note. The
third vector, also of size 3, denotes the same, but for the seventh interval (♯7, ♭7, ⋆7). The hip

can be extended to include other intervals as well. In Table 1 we show example chord labels
and their hip equivalent. The last row shows the ship created from the hips above it.

2.1 Deep Learning Shared Harmonic Interval Profiles

We use a deep neural network to learn ship from cqt. Based on preliminary experiments, a
funnel-shaped architecture with three hidden rectifier unit layers of sizes 1024, 512, and 256
is chosen. Research in audio content analysis has shown that better prediction accuracies can
be achieved by aggregating information over several frames instead of using a single frame
[Sigtia et al., 2015, Bergstra et al., 2006]. Therefore, the input for our dnn is a window of cqt
features from which we learn the ship. Preliminary experiments found an optimal window size
of 15 frames, that is: 7 frames left and right directly adjacent to a frame. Consequently, our
neural network has input layer size of 192 × 15 = 2880. The output layer consists of 19 units
corresponding with the ship features as explained above.

We train the dnn using stochastic gradient descent by minimizing the cross- entropy between
the output of the dnn with the desired ship (computed by considering the chord labels from
all annotators for that audio frame). We train the hyper-parameters of the network using mini-
batch (size 512) training using the adam update rule [Kingma and Ba, 2014]. Early stopping
is applied when validation accuracy does not increase after 20 epochs. After training the dnn,
we can create chord labels from the learned ship features.
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3 Annotator Vocabulary-based Chord Label Estimation

The ship features are used to associate probabilities to chord labels from a given vocabulary.
For a chord label L the hip h contains exactly three ones, corresponding to the root, thirds
and sevenths of the label L. From the ship A of a particular audio frame, we project out three
values for which h contains ones (h(A)). The product of these values is then interpreted as
the combined probability CP (= Π h(A)) of the intervals in L given A. Given a vocabulary
of chord labels, we normalize the CPs to obtain a probability density function over all chord
labels in the vocabulary given A. The chord label with the highest probability is chosen as
the chord label for the audio frame associated to A.

For the chord label examples in Table 1, the products of the non-zero values of the point-wise
multiplications ≈ 0.56, 0.19, and 0.19 for G:maj7, G:maj, and G:minmaj7 respectively. If we
consider these chord labels to be a vocabulary, and normalize the values, we obtain probabilities
≈ 0.6, 0.2, 0.2, respectively. Given extracted ship from multiple annotators providing reference
annotations and chord label vocabularies, we can now generate annotator specific chords labels.

4 Evaluation

ship models multiple (related) chords for a single frame, e.g., the ship in Table 1 models
different flavors of a G and a C chord. For the purpose of personalization, we want to present
the annotator with only the chords they understand and prefer, thereby producing a high chord
label accuracy for each annotator. For example, if an annotator does not know a G:maj7 but
does know an G, and both are probable from an ship, we like to present the latter. In this
paper, we evaluate our dnn ace personalization approach, and the ship representation, for
each individual annotator and their vocabulary.

In an experiment we compare training of our chord label personalization system on multiple
reference annotations with training on a commonly used single reference annotation. In the
first case we train a dnn (dnnship) on ships derived from a dataset introduced by Ni et al.
[2013] containing 20 popular songs annotated by five annotators with varying degrees of musical
proficiency. In the second case, we train a dnn (dnniso) on the hip of the Isophonics (iso)
single reference annotation [Mauch et al., 2009]. iso is a peer-reviewed, and de facto standard
training reference annotation used in numerous ace systems. From the (s)hip the annotator
chord labels are derived and we evaluate the systems on every individual annotator. We
hypothesize that training a system on ship based on multiple reference annotations captures the
annotator subjectivity of these annotations and leads to better personalization than training
the same system on a single (iso) reference annotation.

It could be argued that the system trained on five reference annotations has more data to
learn from than a system trained on the single iso reference annotation. To eliminate this
possible training bias, we evaluate the annotators’ chord labels directly on the chord labels
from iso (ann|iso). This evaluation reveals the similarity between the ship and the iso and
puts the results from dnniso in perspective. If dnnship is better at personalizing chords (i.e.
provides chord labels with a higher accuracy per annotator) than dnniso while the annotator’s
annotations and the iso are similar, then we can argue that using multiple reference annotations
and ship is better for chord label personalization than using just the iso. In a final baseline
evaluation, we also test iso on dnniso to measure how well it models the iso.

Ignoring inversions, the complete dataset from Ni et al. [2013] contains 161 unique chord
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Annotator 1 Annotator 2 Annotator 3 Annotator 4 Annotator 5 iso

dnnship ann|iso dnniso dnnship ann|iso dnniso dnnship ann|iso dnniso dnnship ann|iso dnniso dnnship ann|iso dnniso dnniso

root 0.85 0.73 0.66 0.82 0.74 0.67 0.80 0.72 0.65 0.80 0.73 0.65 0.77 0.67 0.60 0.86
majmin 0.82 0.69 0.61 0.69 0.67 0.53 0.67 0.69 0.53 0.73 0.67 0.55 0.72 0.61 0.55 0.69
mirex 0.82 0.70 0.61 0.69 0.68 0.54 0.66 0.69 0.54 0.73 0.68 0.56 0.72 0.62 0.55 0.69
thirds 0.82 0.70 0.62 0.75 0.67 0.59 0.79 0.69 0.62 0.76 0.68 0.61 0.72 0.62 0.55 0.83
7ths 0.77 0.56 0.50 0.64 0.53 0.42 0.64 0.56 0.43 0.53 0.48 0.40 0.72 0.53 0.55 0.65

Table 2: Chord label personalization accuracies for the five annotators

labels, comprised of five annotators using 87, 74, 62, 81 and 26 unique chord labels respectively.
The intersection of the chord labels of all annotators contains just 21 chord labels meaning that
each annotator uses a quite distinct vocabulary of chord labels. For each song in the dataset,
we calculate cqt and ship features. We divide our cqt and ship dataset frame-wise into 65%
training (28158 frames), 10% evaluation (4332 frames) and 25% testing (10830 frames) sets.
For the testing set, for each annotator, we create chord labels from the deep learned ship based
on the annotators’ vocabulary.

We use the standard mirex chord label evaluation methods to compare the output of our
system with the reference annotation from an annotator [Raffel et al., 2014]. We use evalua-
tions at different chord granularity levels. root only compares the root of the chords. majmin
only compares major, minor, and “no chord” labels. mirex considers a chord label correct if
it shares at least three pitch classes with the reference label. thirds compares chords at the
level of root and major or minor third. 7ths compares all above plus the seventh notes.

5 Results

The dnnship columns of Table 2 for each annotator show average accuracies of 0.72 (σ = 0.08).
For each chord granularity level, our dnnship system provides personalized chord labels that
are trained on multiple annotations, but are comparable with a system that was trained an
evaluated on a single reference annotation (iso column of Tab. 2). Comparable high accuracy
scores for each annotator show that the system is able to learn a ship representation that (i) is
meaningful for all annotators (ii) from which chord labels can be accurately personalized for
each annotator. The low scores for annotator 4 for sevenths form an exception. An analysis
by Ni et al. [2013] revealed that between annotators, annotator 4 was on average the most
different from the consensus. Equal scores for annotator 5 for all evaluations except root are
explained by annotator 5 being an amateur musician using only major and minor chords.

Comparing the dnnship and dnniso columns, we see that for each annotator dnnship models
the annotator better than dnniso. With an average accuracy of 0.55 (σ = 0.07), dnniso’s
accuracy is on average 0.17 lower than dnnship, showing that for these annotators, iso is not
able to accurately model chord label personalization. Nevertheless, the last column shows that
the system trained on iso modeled the iso quite well. The results of ann|iso show that the
annotators in general agree with iso, but the lower score in dnniso shows that the agreement
is not good enough for personalization. Overall, these results show that our system is able
to personalize chord labels from multiple reference annotations, while personalization using a
commonly used single reference annotation yields significantly worse results.

H.V. Koops, W.B. de Haas, J. Bransen and A. Volk. 2017. Chord Label Personalization through Deep

Learning of Integrated Harmonic Interval-based Representations. Proceedings of the First International

Workshop on Deep Learning and Music joint with IJCNN. Anchorage, US. May, 2017. 1(1). pp 19-25



6 Conclusions and Discussion

We presented a system that provides personalized chord labels from multiple reference anno-
tations from audio, based on the annotators’ specific chord label vocabulary and an interval-
based chord label representation that captures the shared subjectivity between annotators. To
test the scalability of our system, our experiment needs to be repeated on a larger dataset,
with more songs and more annotators. Furthermore, a similar experiment on a dataset with
instrument/proficiency/cultural-specific annotations from different annotators would shed light
on whether our system generalizes to providing chord label annotations in different contexts.
From the results presented in this paper, we believe chord label personalization is the next
step in the evolution of ace systems.
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