27 research outputs found

    GluN2A NMDA Receptor Enhancement Improves Brain Oscillations, Synchrony, and Cognitive Functions in Dravet Syndrome and Alzheimer's Disease Models.

    Get PDF
    NMDA receptors (NMDARs) play subunit-specific roles in synaptic function and are implicated in neuropsychiatric and neurodegenerative disorders. However, the in vivo consequences and therapeutic potential of pharmacologically enhancing NMDAR function via allosteric modulation are largely unknown. We examine the in vivo effects of GNE-0723, a positive allosteric modulator of GluN2A-subunit-containing NMDARs, on brain network and cognitive functions in mouse models of Dravet syndrome (DS) and Alzheimer's disease (AD). GNE-0723 use dependently potentiates synaptic NMDA receptor currents and reduces brain oscillation power with a predominant effect on low-frequency (12-20 Hz) oscillations. Interestingly, DS and AD mouse models display aberrant low-frequency oscillatory power that is tightly correlated with network hypersynchrony. GNE-0723 treatment reduces aberrant low-frequency oscillations and epileptiform discharges and improves cognitive functions in DS and AD mouse models. GluN2A-subunit-containing NMDAR enhancers may have therapeutic benefits in brain disorders with network hypersynchrony and cognitive impairments

    Engineering Light-Gated Ion Channels †

    No full text
    ABSTRACT: Ion channels are gated by a variety of stimuli, including ligands, voltage, membrane tension, temperature, and even light. Natural gates can be altered and augmented using synthetic chemistry and molecular biology to develop channels with completely new functional properties. Light-sensitive channels are particularly attractive because optical manipulation offers a high degree of spatial and temporal control. Over the last few decades, several channels have been successfully rendered responsive to light, including the nicotinic acetylcholine receptor, gramicidin A, a voltage-gated potassium channel, an ionotropic glutamate receptor, R-hemolysin, and a mechanosensitive channel. Very recently, naturally occurring lightgated cation channels have been discovered. This review covers the molecular principles that guide the engineering of light-gated ion channels for applications in biology and medicine. Ion channels control the electrical properties of cells by gating in response to a wide array of stimuli. To date, ion channels have been identified that are sensitive to changes in the concentration of ligands such as small molecules and ions, changes in membrane potential, temperature fluctuations, alterations in membrane tension, and most recently

    Engineering Light-Gated Ion Channels †

    No full text

    All Optical Interface for Parallel, Remote, and Spatiotemporal Control of Neuronal Activity NANO

    No full text
    A key technical barrier to furthering our understanding of complex neural networks has been the lack of tools for the simultaneous spatiotemporal control and detection of activity in a large number of neurons. Here, we report an all-optical system for achieving this kind of parallel and selective control and detection. We do this by delivering spatiotemporally complex optical stimuli through a digital micromirror spatiotemporal light modulator to cells expressing the light-activated ionotropic glutamate receptor (LiGluR), which have been labeled with a calcium dye to provide a fluorescent report of activity. Reliable and accurate spatiotemporal stimulation was obtained on HEK293 cells and cultured rat hippocampal neurons. This technique should be adaptable to in vivo applications and could serve as an optical interface for communicating with complex neural circuits. The human brain is an organized interconnected network of more than 100 billion nerve cells, whose activities underlie perception, thought, decision-making, and action. A primary challenge of neuroscience is to understand how groups of cells in the massive neural networks of the brain communicate and dynamically regulate their connections. 1-4 As a result, there is a need for tools that permit the organize

    Cryo-EM reveals an unprecedented binding site for NaV1.7 inhibitors enabling rational design of potent hybrid inhibitors

    No full text
    The voltage-gated sodium (NaV) channel NaV1.7 has been identified as a potential novel analgesic target due to its involvement in human pain syndromes. However, clinically available NaV channel-blocking drugs are not selective among the nine NaV channel subtypes, NaV1.1–NaV1.9. Moreover, the two currently known classes of NaV1.7 subtype-selective inhibitors (aryl- and acylsulfonamides) have undesirable characteristics that may limit their development. To this point understanding of the structure–activity relationships of the acylsulfonamide class of NaV1.7 inhibitors, exemplified by the clinical development candidate GDC-0310, has been based solely on a single co-crystal structure of an arylsulfonamide inhibitor bound to voltage-sensing domain 4 (VSD4). To advance inhibitor design targeting the NaV1.7 channel, we pursued high-resolution ligand-bound NaV1.7-VSD4 structures using cryogenic electron microscopy (cryo-EM). Here, we report that GDC-0310 engages the NaV1.7-VSD4 through an unexpected binding mode orthogonal to the arylsulfonamide inhibitor class binding pose, which identifies a previously unknown ligand binding site in NaV channels. This finding enabled the design of a novel hybrid inhibitor series that bridges the aryl- and acylsulfonamide binding pockets and allows for the generation of molecules with substantially differentiated structures and properties. Overall, our study highlights the power of cryo-EM methods to pursue challenging drug targets using iterative and high-resolution structure-guided inhibitor design. This work also underscores an important role of the membrane bilayer in the optimization of selective NaV channel modulators targeting VSD4

    Remote control of neuronal activity with a light-gated glutamate receptor

    Get PDF
    The ability to stimulate select neurons in isolated tissue and in living animals is important for investigating their role in circuits and behavior. We show that the engineered light-gated ionotropic glutamate receptor (LiGluR), when introduced into neurons, enables remote control of their activity. Trains of action potentials are optimally evoked and extinguished by 380 nm and 500 nm light, respectively, while intermediate wavelengths provide graded control over the amplitude of depolarization. Light pulses of 1–5 ms in duration at not, vert, similar380 nm trigger precisely timed action potentials and EPSP-like responses or can evoke sustained depolarizations that persist for minutes in the dark until extinguished by a short pulse of not, vert, similar500 nm light. When introduced into sensory neurons in zebrafish larvae, activation of LiGluR reversibly blocks the escape response to touch. Our studies show that LiGluR provides robust control over neuronal activity, enabling the dissection and manipulation of neural circuitry in vivo
    corecore